Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Frequently Asked Questions
Frequently Asked Questions
Browse
Browse
By Issue Date
By Issue Date
Authors
Authors
Titles
Titles
Subjects
Subjects
Communities & Collections
Communities & Collections
A Knowledge based approach in GMTI for the estimation of the clutter covariance matrix in space time adaptive processing
Download
index.pdf
Date
2012
Author
Anadol, Erman
Metadata
Show full item record
Item Usage Stats
2
views
0
downloads
Ground Moving Target Indication (GMTI) operation relies on clutter suppression techniques for the detection of slow moving ground targets in the presence of strong radar returns from the ground. Space Time Adaptive Processing (STAP) techniques provide a means to achieve this goal by adaptively forming the clutter suppression filter, whose parameters are obtained using an estimated covariance matrix of the clutter data. Therefore, the performance of the GMTI operation is directly a ected by the performance of the estimation process mentioned above. Knowledge based techniques are applicable in applications such as the parametric estimation of the clutter covariance matrix and the estimation of the clutter covariance matrix in a nonhomogeneous clutter environment. In this study, a knowledge based approach which makes use of both a priori and instantaneous data is proposed for the mentioned estimation process. The proposed approach makes use of Shuttle Radar Topography Mission (SRTM) data as well as instantaneous platform ownship data in order to determine distributed homogeneous regions present in the region of interest; and afterwards employs Doppler Beam Sharpening (DBS) maps along with the colored loading technique for the blending process of the a priori data and the instantaneous data corresponding to the obtained homogeneous regions. A nonhomogeneity detector (NHD) is also implemented for the elimination of discrete clutter and target-like signals which may contaminate the STAP training data. Simulation results are presented for both the knowledge aided and the traditional cases. Finally, the performance of the STAP algorithm will be evaluated and compared for both cases. Results indicate that by using the developed processing approach, detection of previously undetectable targets become possible, and the overall number of false alarms is reduced.
Subject Keywords
Radar.
,
Radar
,
Radar transmitters.
,
Computer algorithms.
URI
http://etd.lib.metu.edu.tr/upload/12615014/index.pdf
https://hdl.handle.net/11511/22008
Collections
Graduate School of Natural and Applied Sciences, Thesis