Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Dynamic approach to wind sensitive optimum cruise phase flight planning
Download
index.pdf
Date
2012
Author
Yıldız, Güray
Metadata
Show full item record
Item Usage Stats
220
views
126
downloads
Cite This
A Flight Management System (FMS) performs 4 Dimensional flight planning; Lateral Planning (Calculation of the latitude and longitudes of waypoints), Vertical Planning (Calculation of the altitudes of waypoints) and Temporal Planning(Calculation of Estimated Time of Arrival). Correct and accurate calculation of4D flight path and then guiding the pilot/airplane to track the route in specified accuracy limits in terms of lateral (i.e Required Navigational Performance RNP), vertical (Reduced Vertical Seperation Minima RVSM), and time (Required Time of Arrival RTA) is what FMS performs in brief. Any deviation of planned input values versus actual input values, especially during the emergency cases (i.e burning outoneof engines etc.), causes the aircraft to deviate the plan and requires replanning now taking into consideration the currentsituation. In emergency situations especially in Oceaning Flights (flights whose cruise phase lasts more than 5 hour is called as “Oceaning Flights”) Optimum Cruise Phase Flight Route Planning plays a vital role. In avionics domain “Optimum”does not mean “shortest path” mainly due to the effect of weather data as wind speed and direction directly affects the groundspeed. In the scope of the current thesis, an algorithm employing dynamic programming paradigms will be designed and implemented to find the optimum flight route planning. A top down approach by making use of aircraft route planning ontology will be implemented to fill the gap between the flight plan specific domain knowledge and optimization techniques employed. Where as the algorithm will be generic by encapsulating the aircraft’s performance characteristics; it will be evaluated on C-130 aircraft
Subject Keywords
Airlines
,
Airlines
,
Airlines
,
Airplanes
,
Airways
,
Mathematical optimization.
URI
http://etd.lib.metu.edu.tr/upload/12615098/index.pdf
https://hdl.handle.net/11511/22011
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Aircraft motion dynamics and lateral trajectory tracking algorithm design for the enhancement of flight safety
Günhan, Cahide Yeliz; Demirbaş, Kerim; Department of Electrical and Electronics Engineering (2018)
This thesis aspires to cover the fundamentals of an aircraft control for Flight Management System (FMS). FMS, trajectory tracking and performance requirements of a flight are the focal points of the thesis. In view of this, the thesis consists of the outlined components to achieve its goal; (i) generating paths - which denotes the creation of reference paths for trajectory by complying with the avionic performance standardizations, (ii) controlling the aircraft – which propagates the control commands by usi...
Flight flutter testing and aeroelastic stability of aircraft
Kayran, Altan (2007-01-01)
Purpose - To provide a general review of the flight flutter test techniques utilized in aeroelastic stability flight testing of aircraft, and to highlight the key items involved in flight flutter testing of aircraft, by emphasizing all the main information processed during the flutter stability verification based on flight test data.
Flight flutter testing and aeroelastic stability of aircraft
Kayran, Altan (2007-01-01)
Purpose - This paper sets out to provide a general review of the flight flutter test techniques utilized in aeroelastic stability flight testing of aircraft, and to highlight the key items involved in flight flutter testing of aircraft, by emphasizing all the main information processed during the flutter stability verification based on flight test data.
Air data system calibration for military transport aircraft modernization program
Özer, Hüseyin Erman; Özgen, Serkan; Department of Aerospace Engineering (2013)
This thesis presents the calibration processes of the pitot-static system, which is a part of the air data system of a military transport aircraft through flight tests. Tower fly-by method is used for air data system calibration. Altitude error caused by the position of the static port on the aircraft is determined by analyzing the data collected during four sorties with different weight, flap and landing gear configurations. The same data has been used to determine the airspeed measurement error. It has be...
Online Dynamic Trim and Control Limit Estimation
Yavrucuk, İlkay (American Institute of Aeronautics and Astronautics (AIAA), 2012-9)
The online estimation of a maneuvering steady-state condition of an aircraft, called the dynamic trim, is used to estimate the allowable control travel during flight, a key information in pilot cueing for envelope limit protection. In this paper a new methodology is presented where adaptive models are used to estimate online local dynamic trim conditions, while requiring very limited a priori vehicle information. Adaptive neural networks are employed to enable online learning. The models are used to estimat...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
G. Yıldız, “Dynamic approach to wind sensitive optimum cruise phase flight planning,” M.S. - Master of Science, Middle East Technical University, 2012.