Solving optimal control time-dependent diffusion-convection-reaction equations by space time discretizations

Download
2013
Seymen, Zahire
Optimal control problems (OCPs) governed by convection dominated diffusion-convection-reaction equations arise in many science and engineering applications such as shape optimization of the technological devices, identification of parameters in environmental processes and flow control problems. A characteristic feature of convection dominated optimization problems is the presence of sharp layers. In this case, the Galerkin finite element method performs poorly and leads to oscillatory solutions. Hence, these problems require stabilization techniques to resolve boundary and interior layers accurately. The Streamline Upwind Petrov-Galerkin (SUPG) method is one of the most popular stabilization technique for solving convection dominated OCPs. The focus of this thesis is the application and analysis of the SUPG method for distributed and boundary OCPs governed by evolutionary diffusion-convection-reaction equations. There are two approaches for solving these problems: optimize-then-discretize and discretize-then-optimize. For the optimize-then-discretize method, the time-dependent OCPs is transformed to a biharmonic equation, where space and time are treated equally. The resulting optimality system is solved by the finite element package COMSOL. For the discretize-then-optimize approach, we have used the so called allv at-once method, where the fully discrete optimality system is solved as a saddle point problem at once for all time steps. A priori error bounds are derived for the state, adjoint, and controls by applying linear finite element discretization with SUPG method in space and using backward Euler, Crank- Nicolson and semi-implicit methods in time. The stabilization parameter is chosen for the convection dominated problem so that the error bounds are balanced to obtain L2 error estimates. Numerical examples with and without control constraints for distributed and boundary control problems confirm the effectiveness of both approaches and confirm a priori error estimates for the discretize-then-optimize approach.

Suggestions

Adaptive discontinuous Galerkin methods for convection dominated optimal control problems
Yücel, Hamdullah; Karasözen, Bülent; Department of Scientific Computing (2012)
Many real-life applications such as the shape optimization of technological devices, the identification of parameters in environmental processes and flow control problems lead to optimization problems governed by systems of convection di usion partial di erential equations (PDEs). When convection dominates di usion, the solutions of these PDEs typically exhibit layers on small regions where the solution has large gradients. Hence, it requires special numerical techniques, which take into account the structu...
Adaptive discontinuous Galerkin (DG) methods for state constrained optimal control problems governed by convection dominated equations
Yücel, Hamdullah; Benner, Peter (2013-07-19)
Many real-life applications such as the shape optimization of technological devices, the identification of parameters in environmental processes and flow control problems lead to optimization problems governed by systems of convection diffusion partial differential equations (PDEs). When convection dominates diffusion, the solutions of these PDEs typically exhibit layers, localized regions where the derivative of the solution is large. Hence, it requires special numerical techniques, which take into account...
Distributed Optimal Control Problems Governed by Coupled Convection Dominated PDEs with Control Constraints
Yücel, Hamdullah (2013-08-30)
We study the numerical solution of control constrained optimal control problems governed by a system of convection diffusion equations with nonlinear reaction terms, arising from chemical processes. Control constraints are handled by using the primal-dual active set algorithm as a semi-smooth Newton method or by adding a Moreau-Yosida-type penalty function to the cost functional. An adaptive mesh refinement indicated by a posteriori error estimates is applied for both approaches.
Parallel Minimum Norm Solution of Sparse Block Diagonal Column Overlapped Underdetermined Systems
Torun, F. Sukru; Manguoğlu, Murat; Aykanat, Cevdet (2017-03-01)
Underdetermined systems of equations in which the minimum norm solution needs to be computed arise in many applications, such as geophysics, signal processing, and biomedical engineering. In this article, we introduce a new parallel algorithm for obtaining the minimum 2-norm solution of an underdetermined system of equations. The proposed algorithm is based on the Balance scheme, which was originally developed for the parallel solution of banded linear systems. The proposed scheme assumes a generalized band...
Discontinuous galerkin methods for time-dependent convection dominated optimal control problems
Akman, Tuğba; Karasözen, Bülent; Department of Scientific Computing (2011)
Distributed optimal control problems with transient convection dominated diffusion convection reaction equations are considered. The problem is discretized in space by using three types of discontinuous Galerkin (DG) method: symmetric interior penalty Galerkin (SIPG), nonsymmetric interior penalty Galerkin (NIPG), incomplete interior penalty Galerkin (IIPG). For time discretization, Crank-Nicolson and backward Euler methods are used. The discretize-then-optimize approach is used to obtain the finite dimensi...
Citation Formats
Z. Seymen, “Solving optimal control time-dependent diffusion-convection-reaction equations by space time discretizations,” Ph.D. - Doctoral Program, Middle East Technical University, 2013.