Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Numerical investigation of effective surge tank dimensions in hydropower plants under various hydraulic conditions
Download
index.pdf
Date
2013
Author
Berberoğlu, Pınar
Metadata
Show full item record
Item Usage Stats
263
views
93
downloads
Cite This
In water conveyance systems, sudden changes in the flow velocity cause a phenomenon called waterhammer associated with high pressure head changes. Unless a control device is used as a precaution, waterhammer may result in costly damages and even in some cases, loss of human lives. In light of this concept, different control devices that can protect the systems against waterhammer are introduced so that the great pressure differences are absorbed and the system is maintained undamaged. In this thesis, the main functions, the requirements for its construction and the different types of the surge tanks are explained. The governing differential equations defining the flow conditions of the surge tanks and their solutions are provided. In addition, for the use of design engineers a procedure to determine proper dimensions of a surge tank is developed. For the sake of dimensioning the surge tank effectively, empirical equations, which calculate the height of three different types of surge tanks with dimensionless parameters, are obtained. With the help of regression analysis, the correlation between the parameters of the developed equations are determined, and found to be relatively high. Finally, the economical aspect of a surge tank is discussed and comparison parameters are introduced to the designer.
Subject Keywords
Surge tanks.
,
Water hammer.
,
Hydraulic transients.
,
Hydraulics.
URI
http://etd.lib.metu.edu.tr/upload/12615558/index.pdf
https://hdl.handle.net/11511/22363
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Development of a computer code to analyse fluid transients in pressurized pipe systems
Dalgıç, Hasan; Bozkuş, Zafer; Department of Civil Engineering (2017)
Sudden change of flow conditions in a pipeline may cause the flow to become time dependent and would start an undesirable physical phenomenon called water hammer. These sudden changes can be caused by variety of scenarios and some of them include valve operations (opening or closing), sudden power loss at pump stations and load rejections or load acceptance at the turbines, etc. Because of its very costly to solve, and sometimes deadly results, it is quite important that transient scenarios be considered fo...
Investigation of water hammer problems and potential solutions in pump discharge lines
Erdem, Recep Çağrı; Bozkuş, Zafer; Department of Civil Engineering (2019)
Disturbance in boundary conditions of a hydraulic system could cause rapid change in flow velocity in confined pipe systems. Pressure wave leading to an event called water hammer may occur as a consequence of that disturbance. Water hammer could lead to catastrophic failures on the hydraulic systems. Thus, proper protection measures should be defined and installed in the system before it is put into operation. The aim of this study is to analyze a pumped discharge line and ensure its safe operation against ...
Computational modelling of free surface flow in intake structures using flow 3D software
Aybar, Akın; Aydın, İsmail; Department of Civil Engineering (2012)
Intakes are inlet structures where fluid is accelerated to a certain flow velocity to provide required amount of water into a hydraulic system. Intake size and geometry affects the formation of flow patterns, which can be influential for hydraulic performance of the whole system. An experimental study is conducted by measuring velocity field in the hydraulic model of the head pond of a hydropower plant to investigate vortex formation. Vortex strength based on potential flow theory is calculated from the mea...
Simulation of flow transients in liquid pipeline systems
Koç, Gencer; Eralp, O. Cahit; Department of Mechanical Engineering (2007)
Transient flow is a situation where the pressure and flow rate in the pipeline rapidly changes with time. Flow transients are also known as surge and Waterhammer which originates from the hammering sound of the water in the taps or valves. In liquid pipelines, preliminary design parameters are chosen for steady state operations, but a transient check is always necessary. There are various types of transient flow situations such as valve closures, pump trips and flow oscillations. During a transient flow, pr...
A new computer code development for solving fluid transient problems in pressurized pipelines
Uyanık, Murat Cenk; Bozkuş, Zafer; Department of Civil Engineering (2023-1-26)
The water hammer phenomenon, which occurs as a result of changes in the boundary conditions of hydraulic systems, can cause major and dangerous problems. Opening or closing of the valve component, sudden power loss or pump startup, change of water level in the reservoir, etc. can be examples of these boundary condition changes. These problems must be considered at the design stage of hydraulic pipeline systems in order to predict and prevent dangerous results. Since the calculation of water hammer analysis ...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
P. Berberoğlu, “Numerical investigation of effective surge tank dimensions in hydropower plants under various hydraulic conditions,” M.S. - Master of Science, Middle East Technical University, 2013.