Fatigue and fracture analysis of helicopter fuselage structures

Özcan, Rıza
In this study a methodology is developed for the fatigue and fracture analysis of helicopter fuselage structures, which are considered as the stiffened panels. The damage tolerance behavior of the stiffened panels multiaxially loaded is investigated by implementing virtual crack closure technique (VCCT). Validation of VCCT is done through comparison between numerical analysis and the studies from literature, which consists of stiffened panels uniaxially loaded and the panel with an inclined crack. A program based on Fortran programming language is developed to automate the crack growth analysis under mixed mode conditions. The program integrates the prediction of the change in crack propagation direction by maximum circumferential stress criterion and the computation of energy release rate by VCCT. It allows reducing the computation time for damage tolerance evaluation for mixed mode cases through finite element analysis and runs the procedure file of MSC.Marc/Mentat for numerical analysis and the program generated by Patran Command Language (PCL) of MSC.Patran for remeshing. The developed code is verified by comparing the crack growth trajectories obtained by numerical analysis with the experimental studies from literature. A submodeling technique is utilized to analyze a particular fuselage portion of helicopter tail boom. Effects of different skin/stringer configurations of the helicopter fuselage structure on stress intensity factor are studied by means of the developed program. Fatigue crack growth analysis is performed by using stress intensity factors obtained from numerical analysis and fatigue propagation models proposed in literature.


Stress analysis of symmetric aluminum composite-laminated beams under a bending moment: Materially nonlinear only
Sayman, O; Belevi, M; Altinhan, M (SAGE Publications, 2005-01-01)
In this study, an elastic-plastic stress analysis is carried out on symmetric laminated composite beams subjected to a bending moment. The composite beam is to be strain hardening. The Bernoulli and Euler hypotheses are assumed to be valid. The Tsai-Hill theory is used as a yield criterion in the solution. The solution is carried out for (90 degrees/0 degrees)(2), (30 degrees/-30 degrees)(2), (45 degrees/-45 degrees)(2), and (60 degrees/-60 degrees)(2) orientations. The bending moment is to be found the hig...
Development of a comprehensive and modular modelling, analysis and simulation tool for helicopters
Yücekayalı, Arda; Kutay, Ali Türker; Department of Aerospace Engineering (2011)
Helicopter flight dynamic, rotor aerodynamic and dynamic analyses activities have been a great dispute since the first helicopters, at both design and test stages. Predicting rotor aerodynamic and dynamic characteristics, helicopter dynamic behavior and trimmed flight conditions is a huge challenge to engineers as it involves the tradeoff between accuracy, fidelity, complexity and computational cost. Flight dynamic activities such as; predicting trim conditions, helicopter dynamic behavior and simulation of...
Structural design and analysis of the mission adaptive wings of an unmanned aerial vehicle
Ünlüsoy, Levent; Yaman, Yavuz; Department of Aerospace Engineering (2010)
In this study, the structural design and analysis of a wing having mission-adaptive control surfaces were conducted. The wing structure was designed in order to withstand a maximum aerodynamic loading of 5 g due to maneuver. The structural model of the wing was developed by using MSC/PATRAN package program and that structural model was analyzed by using MSC/NASTRAN package program. The designed wing was then manufactured by Turkish Aerospace Industries Inc. (TUSAŞ-TAI). The finite element analysis results w...
Numerical Study of the Aerodynamic Effects of Septoplasty and Partial Lateral Turbinectomy
OZLUGEDIK, Samet; NAKIBOGLU, Gunes; Sert, Cüneyt; Elhan, Alaittin; Tönük, Ergin; Akyar, Serdar; Tekdemir, Ibrahim (Wiley, 2008-02-01)
Objectives: To investigate, first, the effects of septal deviation and concha bullosa on nasal airflow, and second, the aerodynamic changes induced by septoplasty and partial lateral turbinectomy, using computational fluid dynamics (CFD).
Structural optimization of a composite wing
Sökmen, Özlem; Akgün, Mehmet A.; Department of Aerospace Engineering (2006)
In this study, the structural optimization of a cruise missile wing is accomplished for the aerodynamic loads for four different flight conditions. The flight conditions correspond to the corner points of the V-n diagram. The structural analysis and optimization is performed using the ANSYS finite element program. In order to construct the flight envelope and to find the pressure distribution in each flight condition, FASTRAN Computational Fluid Dynamics program is used. The structural optimization is perfo...
Citation Formats
R. Özcan, “Fatigue and fracture analysis of helicopter fuselage structures,” M.S. - Master of Science, Middle East Technical University, 2013.