Comparison of fluorescent protein labelled and wild type NMDA receptor distribution

Pirinçci, Şerife Şeyda
NMDA (N-methyl D-aspartate) Receptor is a ligand and voltage gated ion channel and involved in many processes such as synaptic plasticity, memory formation, behavioral responses and cell survival. In the sense of functional activity, cellular localization of NMDAR is important since this receptor shows its activity on the membrane. Although NMDA receptor is intensely studied there are no satisfying study showing its localization with microscobic methods. Besides, the effect of florescent protein labelling of NMDA receptor on its distribution is not shown. It is expected to provide basis for further interaction and distribution studies with this comparison. Contrary to literature, in this study it is shown that NMDA receptor does not localize only in ER and membrane instead has a cytosolic pattern and this pattern is compatible with the distribution of wild type NMDA receptor. In addition, florescent protein labelling of NMDA receptor does not interrupt cellular distribution of NMDAR. Moreover, this study shows that N-terminal domain of NR1 subunit is sufficient to prevent degradation of NR2B in the cell. In consideration of this study it can be concluded that EGFP and mCherry labelled NMDA receptors can be used in interaction studies such as FRET and other studies, making use of fluorescent labelling of NMDA receptors, in terms of cellular distribution.


Detecting g-protein coupled receptor interactions using enhanced green fluorescent protein reassembly
Kumaş, Gözde; Son, Çağdaş Devrim; Yanık, Tülin; Department of Biotechnology (2012)
The largest class of cell surface receptors in mammalian genomes is the superfamily of G protein-coupled receptors (GPCRs) which are activated by a wide range of extracellular responses such as hormones, pheromones, odorants, and neurotransmitters. Drugs which have therapeutic effects on a wide range of diseases are act on GPCRs. In contrast to traditional idea, it is recently getting accepted that G-protein coupled receptors can form homo- and hetero-dimers and this interaction could have important role on...
Automatic detection of mitochondria from electron microscope tomography images: a curve fitting approach
Tasel, Serdar F.; HASSANPOUR, REZA; Mumcuoğlu, Ünal Erkan; Perkins, Guy; Martone, Maryann (2014-02-18)
Mitochondria are sub-cellular components which are mainly responsible for synthesis of adenosine tri-phosphate (ATP) and involved in the regulation of several cellular activities such as apoptosis. The relation between some common diseases of aging and morphological structure of mitochondria is gaining strength by an increasing number of studies. Electron microscope tomography (EMT) provides high-resolution images of the 3D structure and internal arrangement of mitochondria. Studies that aim to reveal the c...
Exact and Approximate Stochastic Simulations of the MAPK Pathway and Comparisons of Simulations' Results
Purutçuoğlu Gazi, Vilda (2006-10-01)
The MAPK (mitogen-activated protein kinase) or its synonymous ERK (extracellular signal regulated kinase) pathway whose components are Ras, Raf, and MEK proteins with many biochemical links, is one of the major signalling systems involved in cellular growth control of eukaryotes including cell proliferation, transformation, differentiation, and apoptosis. In this study we describe the MAPK/ERK pathway via (quasi) biochemical reactions and then implement the pathway by a stochastic Markov process. A novelty ...
Interactions between G-protein Coupled Receptors and Ligand Gated Ion Channels (GPCR-LGIC COUPLING)
Son, Çağdaş Devrim(2014-9-30)
Dopamine receptors are members of G-protein coupled receptor superfamily. These receptors are the key point of dopaminergic system, which controls the regulation of memory, attention, food intake, endocrine regulation, psychomotor activity and positive reinforcement. To regulate so many critically important neurological events, dopamine receptors have complex interactions with other receptors and ion channels. In this study, a trimeric complex comprising D2 receptor -which is a subtype of dopamine receptors...
Visualization of interactions between fluorescently tagged g protein α11, α12/13 subtypes and adenosine 2a, dopamine 2 or homodimer adenosine 2a/2a receptors
Kostromin, İrmak Begüm; Son, Çağdaş Devrim; Department of Biology (2018)
G-Protein-coupled receptors (GPCRs) belong to one of the largest family of cell surface receptors, which transmit extracellular signals to intracellular responses by interacting with G- proteins. The G proteins are known as molecular switches that regulates different pathways via control of secondary messengers and signaling proteins. Adenosine 2A (A2A) and Dopamine 2 (D2) receptors belong to G-Protein-coupled receptors (GPCRs) family and are located mostly in striatopallidal γ-aminobutyric acid (GABA) cont...
Citation Formats
Ş. Ş. Pirinçci, “Comparison of fluorescent protein labelled and wild type NMDA receptor distribution,” M.S. - Master of Science, Middle East Technical University, 2013.