An Investigation on the performance of aluminium panel curtain wall system in relation to the facade tests

Download
2013
Şengün Doğan, Banu Nur
Extruded aluminium has become the material of choice for building envelope owing to its lightness, wide range of possibilities for profile design, durability and the eco-friendly attitude. In the light of recent technological developments in metal and glass industries, there has been various new approaches towards aluminum curtain wall systems which are mostly preferred by architects in high-rise buildings. Herein, the panel curtain wall system is determined as innovative and the modern aluminium curtain wall system. Furthermore, in the recent prestigious high-rise buildings, the demand of the architects and the contractors begins to replace the conventional curtain wall system which is constructed via stick construction technique, with panel curtain wall system which is applied to the building in a modular form . The main aim of this study is to investigate why the panel curtain wall system comes to the forefront especially for high-rise buildings. Accordingly, the basic architectural, structural and constructional design principles of unitized aluminium curtain wall systems are defined, analyzed and then the advantages and disadvantages of this system are pointed out from an architectural point of view. In order to evaluate the performance of panel curtain wall system against environmental factors, the facade tests, which are new and still-developing methods in Turkey, are used. The extensive facade tests have been conducted on full-scale specimen under field conditions reproduced in an equipped test chamber by authorized facade testing company and the assessment of this curtain wall performance was provided accordance with related standards. The two story full-size specimen, was 3000 mm to 7600 mm, belongs to one of the prestigious office towers constructed in İstanbul. The facade tests conducted to the specimen include watertightness, air permeability, wind resistance and building movement tests. In this study, the performance criteria of panel curtain wall system were investigated not only against environmental factors but also against human sourced factors. It is expected that this study will provide a guideline for system designers on the future research and development phase and for architects on the selection of curtain wall systems for their buildings due to the conducted test results and other advantages taken throughout this study.

Suggestions

The effect of B4C reinforcements on the microstructure, mechanical properties, and wear behavior of AA7075 alloy matrix produced by squeeze casting
Demir, Mehmet Emin; ÇELİK, YAHYA HIŞMAN; KILIÇKAP, EROL; Kalkanlı, Ali (2022-11-01)
Aluminum and its alloys have become the most popular materials in applications aiming to provide lightness due to their low density. However, the low mechanical properties compared to other competitors are among the disadvantages of aluminum and its alloys. This is an important motivation factor in researching strength increasing mechanisms in aluminum and its alloys. In this study, the effects of reinforcement ratio and type on the microstructure, mechanical properties, and wear behavior of the AA7075/B4C ...
Characterization of novel materials for fused filament fabrication
AL-DUAIS, ABDULLAH ABDULRAHMAN NAJI; Özerinç, Sezer; Kazanç Özerinç, Feyza; Department of Mechanical Engineering (2021-6-24)
Fused filament fabrication (FFF) is a polymer additive manufacturing technology that is suitable for a wide range of applications due to its low cost and ease of use. This thesis investigated two types of novel materials for FFF use. First, a foaming PLA filament is considered and the mechanical properties of 3D printed specimens using this filament is characterized. The results show that the strength, modulus and density of the foaming PLA can be tuned over a wide range of values by varying FFF process par...
Investigation of SiCp reinforced aluminium matrix composites by shear and longitudinal ultrasonic waves
Gür, Cemil Hakan (2001-11-01)
SiC particulate reinforced aluminium matrix composites are attractive materials for automotive and aerospace applications because of their outstanding stiffness and strength as compared to the aluminium alloys, in addition to the low cost of particulate reinforcement. The aim of this study is to establish correlations between ultrasonic wave velocities and SiC content, microstructure and mechanical properties of SiC reinforced Al composites, Specimens were fabricated for various volume fraction and size com...
A Modeling Study on the Layout Impact of with-in-die Thickness Range for STI CMP
Kıncal, Serkan; BAŞIM DOĞAN, GÜL BAHAR (2012-10-01)
Chemical Mechanical Planarization process has a proven track record as an effective method for planarizing the wafer surface at multiple points of the semiconductor manufacturing flow. One of the most challenging aspects of the CMP process, particularly in applications like Shallow Trench Isolation (STI), is the difference in relative removal rates of the different materials that are being polished. A certain amount of over-polish is required to clear oxide on top of the nitride, however, this over-polish m...
An appraisal of structural glass wall systems with emphasis on spider fitting details
Büyükkılıç, Salih Gökhan; Elias Özkan, Soofia Tahira; Department of Architecture (2003)
The technological and innovational developments in steel and glass industries has enabled designers to create completely transparent façades. Building façade articulations designed to attain maximum transparency, have thus been executed with the contribution of elegant steel supporting systems, having heavy load bearing capacities, by minimizing the dimensions of structural systems. The aim of this study was to define, analyze and evaluate the accumulated knowledge on structural glass wall systems in genera...
Citation Formats
B. N. Şengün Doğan, “An Investigation on the performance of aluminium panel curtain wall system in relation to the facade tests,” M.S. - Master of Science, Middle East Technical University, 2013.