Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Characterization of novel materials for fused filament fabrication
Download
AANA_2389989_Ref (10405139).pdf
Date
2021-6-24
Author
AL-DUAIS, ABDULLAH ABDULRAHMAN NAJI
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
1055
views
563
downloads
Cite This
Fused filament fabrication (FFF) is a polymer additive manufacturing technology that is suitable for a wide range of applications due to its low cost and ease of use. This thesis investigated two types of novel materials for FFF use. First, a foaming PLA filament is considered and the mechanical properties of 3D printed specimens using this filament is characterized. The results show that the strength, modulus and density of the foaming PLA can be tuned over a wide range of values by varying FFF process parameters. The second part of the thesis explored the synthesis of ABS-fly ash composite filaments. 3D printing of this composite is successfully demonstrated and the mechanical properties are characterized.
Subject Keywords
Fused Filament Fabrication (FFF)
,
Polymer-Fly ash composite filament
,
Foaming polymer filament
,
Mechanical properties
,
Printing parameters
URI
https://hdl.handle.net/11511/91348
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Investigation of variable bead widths in FFF process
Gharehpapagh, Bahar; Dölen, Melik; Yaman, Ulaş (2019-01-01)
Fused filament fabrication technology provides the opportunity to produce complex objects with sophisticated interior features. Here, extruding variable bead widths for desktop 3D printers is presented in order to improve resolution and to decrease the build time. In the proposed method, the cross-section is continuously varied according to the geometric features associated with the layers. That is, thinner beads can be utilized to print features with higher accuracy such as the outer surfaces, edges/corner...
Improving the ductility of polylactic acid parts produced by fused deposition modeling through polyhydroxyalkanoate additions
Kaygusuz, Burçin; Özerinç, Sezer (2019-11-01)
Polylactic acid (PLA) is one of the most commonly used materials for fused deposition modeling (FDM) due to its low cost, biocompatibility, and desirable printing characteristics. However, its low ductility is a major disadvantage for engineering applications where high damage tolerance is needed. This study investigates the feasibility of polyhydroxyalkanoate (PHA) additions to PLA for improving the ductility of parts produced by FDM. Thermal and mechanical behavior of PLA/PHA specimens containing 12 wt % ...
Effect of annealing on the mechanical properties of pla parts produced by fused filament fabrication
Aydın, Sencer; Özerinç, Sezer; Department of Micro and Nanotechnology (2021-9-01)
Additive manufacturing has become a disruptive technology for the production of load bearing components in a wide range of applications. Fused filament fabrication (FFF) is among the most effective and economical techniques for the printing of polymeric parts. There are numerous thermoplastic materials suitable for FFF. Among these, Polylactic acid (PLA) is a renewable, sustainable and cost-effective alternative. For better utilization of PLA parts produced by FFF, there is a need to understand the structur...
3D printing of polymeric tissue engineering scaffolds using open-source fused deposition modeling
Alagoz, Ayse Selcen; Hasırcı, Vasıf Nejat (2020-08-01)
Open-source printing is a field where the cost of printing additive manufacturing products is cheaper due to more economical software and parts to construct a product including those of tissue engineering scaffolds. In this manuscript, fused deposition modeling (FDM) is used as the main avenue of open-source use in 3D printing of tissue engineering scaffolds. Additive manufacturing enables the researchers to build 3D products with interior and exterior architectures precisely defined and produced using open...
Manufacturing of Functionally Graded Porous Products by Selective Laser Sintering
Erdal Erdoğmuş, Merve; Dağ, Serkan (2008-09-25)
Selective laser sintering (SLS) is a rapid prototyping technique which is used to manufacture plastic and metal models. The porosity of the final product obtained by SLS can be controlled by changing the energy density level used during the manufacturing process. The energy density level is itself dependent upon manufacturing parameters such as laser power, hatching distance and scanning speed. Through mechanical characterization techniques, it is possible to quantitatively relate the energy density levels ...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
A. A. N. AL-DUAIS, “Characterization of novel materials for fused filament fabrication,” M.S. - Master of Science, Middle East Technical University, 2021.