Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Innovative approaches in Doherty amplifier design for higher efficiency and wider frequency bandwidth
Download
index.pdf
Date
2013
Author
Şahan, Necip
Metadata
Show full item record
Item Usage Stats
217
views
95
downloads
Cite This
In the first phase of this thesis, the design optimizations of the bias adapted Doherty power (BA-DPA) and asymmetric Doherty power amplifier (ADPA) are presented for maximum efficiency criteria in the high power region. BA-DPA is analyzed by a novel approach in terms of efficiency. The ideal efficiency characteristics of BA-DPA with different bias adaptation schemes are illustrated. The maximum conduction angle and periphery requirement of the class-C biased peaking power amplifier (PPA) to realize fully load modulated ADPA are investigated. The appropriate maximum conduction angles and relative peripheries for the PPA are evaluated for different load modulation regions. The advantages and drawbacks of the BA-DPA and ADPA based on the simulated and measured performances of the designed amplifiers are concluded. In the second phase of this thesis, it is focused on the hot research topic of widening the operational bandwidth of the DPA. A novel combiner that solves the fundamental bandwidth limitation problems of the conventional Doherty structure is proposed. A new Doherty amplifier structure with an octave operational bandwidth based on the proposed combiner is presented. The implemented DPA has approximately one and half times higher bandwidth with respect to the similar studies in the literature.
Subject Keywords
Power amplifiers.
,
Amplifiers (Electronics).
,
Broadband amplifiers.
URI
http://etd.lib.metu.edu.tr/upload/12615875/index.pdf
https://hdl.handle.net/11511/22582
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Development of a tuner topology for multiharmonic matching and implementation on tunable dual band power amplifier design
Kılıç, Hasan Hüseyin; Demir, Şimşek; Department of Electrical and Electronics Engineering (2018)
In this thesis work, the effect of multi-harmonic load matching on improving the efficiency of power amplifiers is investigated. Techniques of efficient power amplifier design are discussed and analyzed in terms of multi-harmonic matching. Several circuit topologies are evaluated for multi-harmonic matching by discussing the advantages and the limitations. Specifically, a detailed multi-harmonic analysis of the triple stub topology is presented. The already-known single frequency impedance matching capabili...
Broadband spatial power combining in coaxial medium
Tanç, Zafer; Demir, Şimşek; Department of Electrical and Electronics Engineering (2012)
Microwave amplifiers having high output power are the essential components in many systems, such as radar and satellite communication. Although the structures generated by tube technologies fulfill the necessity of the required output power, the use of these amplifiers includes some critical drawbacks, one of which is the limited life of operation. Alternatively, solid-state amplifiers produced by transistor technology are preferred since they are high reliable devices. In order to provide the necessary out...
A New approach for distributed amplifier design
Yılmaz, İsmail Gökhan; Koç, Seyit Sencer; Demir, Şimşek; Department of Electrical and Electronics Engineering (2012)
In this thesis work, a new distributed amplifier topology is discussed and applied to three different cases. The topology is based on dividing the frequency spectrum into channels and amplifying afterwards. The channelized and amplified signals are then combined at the output for broadband amplification. This topology is used in the design of a three channel 0.1-1 GHz amplifier with a gain of 14.5±0.6 dB. The design is fabricated, and then the measured and simulated results are compared. A second 0.1-1 GHz ...
Linearization of RF power amplifiers with memoryless baseband predistortion method
Kolcuoğlu, Turusan; Demir, Şimşek; Department of Electrical and Electronics Engineering (2011)
In modern wireless communication systems, advanced modulation techniques are used to support more users by handling high data rates and to increase the utilization efficiency of the limited RF spectrum. These techniques are sensitive to the nonlinear distortions due to their high peak to average power ratios. Main source of nonlinear distortion in transmitter topologies are power amplifiers that determine the overall efficiency and linearity of the transmitter. To increase linearity without sacrificing effi...
An experimental study on Power Amplifier linearisation by artificial neural networks Yapay Sinir Aǧlari ile Güç Yükselteç Doǧrusalląstirma Amaçli Deneysel Bir Çalisma
Yesil, Soner; Kolagasioglu, Ahmet Ertugrul; Yılmaz, Ali Özgür (2018-07-05)
This paper represents an experimental study on the linearisation of Power Amplifiers especially on high output power regions by utilizing an artificial neural network structure and open-loop training method. For the same in-band output power, 9dB EVM and 6dB ACLR improvement has been observed on hardware by feeding the proposed digital predistortion signal (DPD) to the PA under test.
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
N. Şahan, “Innovative approaches in Doherty amplifier design for higher efficiency and wider frequency bandwidth,” Ph.D. - Doctoral Program, Middle East Technical University, 2013.