Estimation of dynamic soil properties and soil amplification ratios with alternative techniques

Download
2013
Şişman, Fatma Nurten
Earthquakes are among the most destructive natural disasters affecting urban populations. Structural damage caused by the earthquakes varies depending not only on the seismic source and propagation properties but also on the soil properties. The amplitude and frequency content of seismic shear waves reaching the earth’s surface is dependent on local soil conditions. It is well known that the soft sediments on top of hard bedrock can greatly amplify the ground motion and cause severe structural damage. When the fundamental period of the soil is close to the fundamental period of a structure, structural damage increases significantly. Estimation of the fundamental periods, amplification factors and types of soils is critical in terms of reduction of loss and casualties. For the reasons stated, estimation of dynamic behavior of soils has become one of the major topics of earthquake engineering. Studies for determining dynamic properties of soils depend fundamentally on the estimation of the S-wave velocity profiles, amplification factors and ground response. In this study first, the Multi-Mode Spatial Autocorrelation (MMSPAC) method is used to estimate the S-wave velocity profiles at the sites of interest. This method is different than the other ones in the sense that it works for the higher modes as well as the fundamental mode. In the second part, Horizontal to Vertical Spectral Ratio (HVSR) method will be used on both microtremor and ground motion data. Finally, the amplification factors from alternative methods are compared with each other. Consistent results are obtained in terms of both fundamental frequencies and amplification factors.

Suggestions

A Comparative assessment of seismic soil liquefaction triggering relationships
Ilgaç, Makbule; Çetin, Kemal Önder; Department of Civil Engineering (2015)
Starting with 1964 Niigata and Alaska Earthquakes, seismic soil liquefaction behavior has become a major research stream in geotechnical earthquake engineering. Since then, a number of investigators (e.g.: Seed et. al. (1984), Liao et. al. (1988, 1998), Toprak et. al. (1999), Cetin et. al. (2004) and Idriss and Boulanger (2004, 2008, 2012)) introduced deterministic and probabilistic liquefaction triggering assessment methodologies. The scope of this study is to develop an SPT-based seismic soil liquefaction...
Evaluation of Relations among Drought Indices and Remotely Sensed Soil: Moisture Datasets over Turkey
Bulut, Burak; Afshar, Mehdi; Yılmaz, Mustafa Tuğrul (null; 2018-04-08)
Drought is globally classified as a natural disaster due to the damage it causes. As a result, detection of its characteristics is essential for understanding and reducing the adverse effects of this natural disaster and improving its prediction. Spatial distribution and temporal changes of soil moisture is one of the important components in climatic, ecological and natural hazards at global, regional and local levels scales. In this study, different drought indices (i.e. SPI, SPEI, PDSI) and remotely sense...
Analysis of Agricultural Drought Using NOAH Root Zone Soil Moisture Estimates and MODIS Based NDVI Values over Turkey
Bulut, Burak; Afshar, Mehdi; Yılmaz, Mustafa Tuğrul (null; 2017-04-28)
Analysis of drought is globally classified as a natural disaster due to the damage it causes. As a result detection of its characteristics is essential for understanding and reducing the adverse effects of this natural disaster and improving its prediction. In this study, root zone soil moisture (SM) estimates obtained from NOAH hydrological model and normalized difference vegetation index (NDVI) obtained from MODIS observations are used to analyze the recent agricultural droughts in Turkey that are diagnos...
Analysis of the 2007 and 2013 Droughts in Turkey by NOAH Hydrological Model
Bulut, Burak; Yılmaz, Mustafa Tuğrul (2016-10-01)
Analysis of drought, which is classified as a natural disaster, is globally considering the damage it gives. As a result detection of its characteristics is essential for understanding and reducing the effects of this natural disaster and for imminent prediction. In this study, soil moisture estimates obtained from NOAH hydrological model and normalized difference vegetation index obtained from MODIS observations are used to analysis the recent droughts in Turkey. With the utilization of these parameters th...
Relationships between felt intensity and instrumental ground motion parameters for Turkey
Bilal, Mustafa; Askan Gündoğan, Ayşegül; Department of Civil Engineering (2013)
Earthquakes are among natural disasters with significant damage potential; however it is possible to reduce the losses by taking several remedies. Reduction of seismic losses starts with identifying and estimating the expected damage to some accuracy. Since both the design styles and the construction defects exhibit mostly local properties all over the world, damage estimations should be performed at regional levels. Another important issue in disaster mitigation is to determine a robust measure of ground m...
Citation Formats
F. N. Şişman, “Estimation of dynamic soil properties and soil amplification ratios with alternative techniques,” M.S. - Master of Science, Middle East Technical University, 2013.