Estimation of dynamic soil properties and soil amplification ratios with alternative techniques

Şişman, Fatma Nurten
Earthquakes are among the most destructive natural disasters affecting urban populations. Structural damage caused by the earthquakes varies depending not only on the seismic source and propagation properties but also on the soil properties. The amplitude and frequency content of seismic shear waves reaching the earth’s surface is dependent on local soil conditions. It is well known that the soft sediments on top of hard bedrock can greatly amplify the ground motion and cause severe structural damage. When the fundamental period of the soil is close to the fundamental period of a structure, structural damage increases significantly. Estimation of the fundamental periods, amplification factors and types of soils is critical in terms of reduction of loss and casualties. For the reasons stated, estimation of dynamic behavior of soils has become one of the major topics of earthquake engineering. Studies for determining dynamic properties of soils depend fundamentally on the estimation of the S-wave velocity profiles, amplification factors and ground response. In this study first, the Multi-Mode Spatial Autocorrelation (MMSPAC) method is used to estimate the S-wave velocity profiles at the sites of interest. This method is different than the other ones in the sense that it works for the higher modes as well as the fundamental mode. In the second part, Horizontal to Vertical Spectral Ratio (HVSR) method will be used on both microtremor and ground motion data. Finally, the amplification factors from alternative methods are compared with each other. Consistent results are obtained in terms of both fundamental frequencies and amplification factors.
Citation Formats
F. N. Şişman, “Estimation of dynamic soil properties and soil amplification ratios with alternative techniques,” M.S. - Master of Science, Middle East Technical University, 2013.