Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Frequently Asked Questions
Frequently Asked Questions
Communities & Collections
Communities & Collections
Temporal variation in aerosol composition at northwestern Turkey
Download
index.pdf
Date
2013
Author
Genç Tokgöz, D. Deniz
Metadata
Show full item record
Item Usage Stats
2
views
0
downloads
Daily aerosol samples (PM) were collected at a rural station, which is 5 km away from the Turkish-Bulgarian border between April 2006 and March 2008. Aerosol samples were analyzed for elements by ICPMS, ions by IC and black carbon by aethalometer to provide a multi-species aerosol data set, which can represent aerosol population for Northwestern Turkey and Eastern Europe. Average concentration of SO42-, NO3- and NH4+ was 5.8, 2.9 and 2.0 μg m-3, respectively, while total aerosol mass was 66 μg m-3. Seasonal variation of crustal species had maxima in summer, while most of the anthropogenic species had maxima in winter. Rainfall was found as the only local meteorological parameter affecting aerosols concentrations. The dominant sectors of air masses arriving the Northwestern Turkey were northeast in summer and west-northwest in winter. Air masses were classified into five clusters regarding their wind speed and direction. Most species indicated significant differences between clusters. The influence of forest fires in Ukraine and Russian Federation was identified by cluster analysis using soluble K as tracer. Source apportionment of PM was carried out by EPA PMF model and five sources were resolved. Crustal emissions were found to be the major contributor to PM (41%). The second largest source was distant anthropogenic sources with a contribution of 26%. Traffic was also a remarkable source with 16% contribution. Sea salt and stationary combustion sources accounted for 9% and 8% of PM, respectively. Potential source regions of resolved sources were determined by potential source contribution function (PSCF).
Subject Keywords
Air masses.
,
Cluster analysis.
,
Atmospheric circulation.
,
Aerosols.
,
Environmental impact analysis.
URI
http://etd.lib.metu.edu.tr/upload/12615740/index.pdf
https://hdl.handle.net/11511/22623
Collections
Graduate School of Natural and Applied Sciences, Thesis