Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Effect of soil arching on lateral soil pressures acting upon rigid retaining walls
Download
index.pdf
Date
2013
Author
Aydın Ertuğrul, Nihan
Metadata
Show full item record
Item Usage Stats
190
views
148
downloads
Cite This
Retaining walls are encountered in various fields of civil engineering. In many practical applications, the earth pressure against rigid retaining walls are calculated using either Coulomb’s or Rankine’s lateral earth pressure theories. For the sake of simplicity, it is assumed that the lateral earth pressure distribution is linear; however, many experimental results indicated it is significantly nonlinear. Previous physical modeling studies indicated that this nonlinearity results from arching behavior induced within the granular backfill. In this study, lateral active earth pressures acting on yielding rigid retaining walls are studied by considering arching effects. Previous lateral earth pressure theories that take into account of soil arching are modified. For this purpose, new analytical formulations considering arching effects are suggested to predict lateral active earth pressures. In these proposed methodologies, shape of the failure surface and soil arch geometries are changed for better representation of the actual behavior. Additionally, effect of surcharge on lateral earth pressures is discussed. Pressure distributions estimated by the proposed methodologies were validated against physical test data and compared with the previous theories. Parametric studies indicate that active earth pressure distributions change from triangular to curvilinear as the effect of soil arching increases. Wall backfill interface friction is found as the main factor influencing the arching effect. Lateral soil pressures calculated according to parabolic failure line assumption provide better agreement with the actual test results. Application point of the total thrust rises up to 0.43H which is approximately 30% higher than the mostly used value of 0.33H.
Subject Keywords
Retaining walls
,
Earth pressure.
,
Soil nailing.
URI
http://etd.lib.metu.edu.tr/upload/12615994/index.pdf
https://hdl.handle.net/11511/22633
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
THE NONLINEAR RESPONSE OF UNREINFORCED MASONRY BUILDINGS TO EARTHQUAKE EXCITATIONS
TANRIKULU, AK; MENGI, Y; MCNIVEN, HD (1992-11-01)
The three-dimensional non-linear earthquake behaviour of unreinforced masonry buildings is studied by using a constitutive model established experimentally for burned-clay brick masonry wall panels. The parameter functions appearing in the constitutive model are modified so that they accommodate a wall panel made of a general masonry material. In the study it is assumed that the floors of the masonry building are reinforced concrete slabs which are infinitely rigid in their own planes and that the wall pane...
Effect of AAC Infill Walls on Structural System Dynamics of a Concrete Building
Çelik, Ozan Cem (2016-01-01)
The effect of autoclaved aerated concrete (AAC) infill walls on the structural system dynamics of a two-story reinforced concrete building is investigated using its finite element structural model, which is calibrated to simulate the acceleration-frequency response curves from its forced vibration test. The model incorporating the AAC infill walls by equivalent diagonal struts captures the increase in lateral stiffness of the building and the torsional motions induced due to the asymmetrically placed AAC in...
Influence of ground motion intensity on the performance of low- and mid-rise ordinary concrete buildings
Akkar, S; Sucuoğlu, Haluk; Yakut, Ahmet (2004-05-21)
Fragility functions are determined for low- and mid-rise ordinary concrete buildings. A hybrid approach is employed where building capacities are obtained from field data and their dynamic responses are calculated by response history analysis. Lateral stiffness, strength and deformation capacities of the sample buildings are determined by pushover analyses. Uncertainties in lateral stiffness, strength and damage limit states are expressed by using statistical distributions. The seismic deformation demands o...
Effect of out-of-plane behavior on seismic fragility of masonry buildings in Turkey
Ceran, Hasan Burak; Erberik, Murat Altuğ (Springer Science and Business Media LLC, 2013-10-01)
This study focuses on the evaluation of seismic safety of unreinforced masonry buildings in Turkey by using fragility curves generated for two behavior modes of load bearing walls: in-plane and out-of-plane. During generation of fragility curves, a force-based approach has been used. There exist two limit states in terms of base shear strength for in-plane behavior mode and flexural strength for out-of-plane behavior mode. To assess the seismic vulnerability of unreinforced masonry buildings in Turkey, frag...
An automated approach for the design of Mechanically Stabilized Earth Walls incorporating metaheuristic optimization algorithms
YALÇIN, YAĞIZER; Orhon, Murat; Pekcan, Onur (2019-01-01)
Considered as cost-efficient, reliable and aesthetic alternatives to the conventional retaining structures, Mechanically Stabilized Earth Walls (MSEWs) have been increasingly used in civil engineering practice over the previous decades. The design of these structures is conventionally based on engineering guidelines, requiring the use of trial and error approaches to determine the design variables. Therefore, the quality and cost effectiveness of the design is limited with the effort, intuition, and experie...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
N. Aydın Ertuğrul, “Effect of soil arching on lateral soil pressures acting upon rigid retaining walls,” M.S. - Master of Science, Middle East Technical University, 2013.