Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Frequently Asked Questions
Frequently Asked Questions
Browse
Browse
By Issue Date
By Issue Date
Authors
Authors
Titles
Titles
Subjects
Subjects
Communities & Collections
Communities & Collections
Three dimensional finite element modeling for the laterally loaded passive pile behavior
Download
index.pdf
Date
2013
Author
Ekici, Anıl
Metadata
Show full item record
Item Usage Stats
6
views
1
downloads
In this study, some of the factors affecting the slope stabilizing pile response have been investigated by means of three dimensional finite element solution using PLAXIS 3D software. Three full scaled field experiments were modeled for the verification of the proposed 3D models. It was concluded that PLAXIS 3D can successfully predict the measured pile deflection and force distributions. Afterwards, a parametric study was carried out. Two series of analyses (i) studying the effect of the pile embedment depth and (ii) studying the effect of pile spacing were performed. Some of the conclusions of this study are: (1) There is a critical pile embedment depth necessary to provide sufficient pile resistance, and this depth depends on unstable soil properties and strength ratio of stable soil to unstable soil. (2) As piles get closer (smaller s/d), load on each pile decreases and soil arching increases (i.e. less flowing of the soil between the piles). So there is an optimum pile spacing by considering soil arching and group reduction phenomena. (3) For sandy soils, effect of soil arching significantly decreases for pile spacing ratios (s/d) larger than 6. Piles in group start to behave like individual piles approximately at s/d=8. Stronger soil arching develops at pile spacing ratios (s/d) between 2 and 4. (4) Significant group reduction develops when piles are closely spaced. Approximately 30% reduction was observed in lateral loads exerted to piles in group for s/d=2. Therefore, s/d=4 was seen to be more optimum value for an effective pile design.
Subject Keywords
Piling (Civil engineering).
,
Slopes (Soil mechanics)
,
Foundations.
,
Soil stabilization.
URI
http://etd.lib.metu.edu.tr/upload/12616027/index.pdf
https://hdl.handle.net/11511/22669
Collections
Graduate School of Natural and Applied Sciences, Thesis