Flexible u-shaped assembly line design problem

Download
2013
Oğan, Ayşe Dilek
This study considers a U-shaped assembly line where the operators are allowed to work on both legs of the U-shaped line. We assume that the number of workstations and the cycle time are fixed. Each task uses a specified set of equipments where each type of equipment has a specified cost. The problem is to assign the tasks together with their equipments to the workstations so as to minimize the total equipment cost. We propose a branch and bound algorithm that uses efficient precedence relations and lower bounds. We find that the algorithm is able to solve moderate size problem instances with up to 21 tasks-10 workstations and 30 tasks-8 workstations in reasonable time.

Suggestions

Rebalancing of assembly lines
Sancı, Ece; Azizoğlu, Meral; Department of Industrial Engineering (2015)
In this study, we consider an assembly line rebalancing problem. We assume that there is a disruption on one or more workstations that makes the current solution infeasible. After the disruption, we aim to find a rebalance so as to catch the trade-off between the efficiency measure of cycle time and the stability measure of number of tasks assigned to different workstations in the original and new solutions. We generate all nondominated objective vectors with respect to our efficiency and stability measures...
Shape optimization of wheeled excavator lower chassis
Özbayramoğlu, Erkal; Söylemez, Eres; Department of Mechanical Engineering (2008)
The aim of this study is to perform the shape optimization of the lower chassis of the wheeled excavator. A computer program is designed to generate parametric Finite Element Analysis (FEA) of the structure by using the commercial program, MSC. Marc-Mentat. The model parameters are generated in the Microsoft Excel platform and the analysis data is collected by the Python based computer codes. The previously developed software Smart Designer [5], which performs the shape optimization of an excavator boom by ...
A branch and bound method for the line balancing problem in U-shaped assembly lines with equipment requirements
Ogan, Dilek; Azizoğlu, Meral (2015-07-01)
In this study we consider a U-shaped assembly line balancing problem where each task uses a specified set of equipments and each type of equipment has a specified cost. Our problem is to assign the tasks together with their equipments to the workstations so as to minimize the total equipment cost. We formulate the problem as a mixed integer linear programming model that is capable of solving small sized instances. We propose a branch and bound algorithm that uses efficient precedence relations and lower bou...
Mixed-model two-sided assembly line balancing
Uçar, Emre; Kırca, Ömer; Department of Industrial Engineering (2010)
In this study we focus on two-sided mixed-model assembly line balancing type-I problem. There is a production target for a fixed time horizon and the objective is to produce this amount with the minimum level of workforce. A mathematical model is developed to solve this problem in an optimal manner. For large scale problems, the mathematical model fails to give the optimal solution within reasonable computational times. Thus, a heuristic approach based on threshold accepting algorithm is presented. Both the...
Workload smoothing in assembly lines
İmat, Sadullah; Azizoğlu, Meral; Department of Industrial Engineering (2014)
In this thesis, we consider a simple assembly line balancing problem with fixed number of workstations and predefined cycle time. Our objective is to minimize the sum of the squared deviations of the workstation loads from the cycle time. We first present pure integer nonlinear programming model and then convert the model into mixed integer linear program. We develop several optimality properties and bounding mechanisms, and use them in our branch and bound algorithm. The results of our computational study ...
Citation Formats
A. D. Oğan, “Flexible u-shaped assembly line design problem,” M.S. - Master of Science, Middle East Technical University, 2013.