Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Investigation of the structural properties of low dimensional nanostructures : molecular dynamics simulations
Download
index.pdf
Date
2013
Author
Özdamar, Burak
Metadata
Show full item record
Item Usage Stats
328
views
223
downloads
Cite This
This study aims to investigate the structural and thermodynamic properties of nanostructures which are generated from different atoms and geometries. The nanostructures in question are boron nitride nanoparticles, silicon nanowires along with sawtooth-like graphene nanoribbons. The goal is to calculate the specific heat values of boron nitride nanoparticles while the mechanical properties of the other nanostructures are investigated under uniaxial strain. The structural behaviors of these generated nanoparticles at different temperatures are investigated by classical molecular dynamics simulation technique with atomistic potential energy functions that are suitable for each system.
Subject Keywords
Nanostructures.
,
Nanowires.
,
Nanosilicon.
,
Graphene.
,
Boron nitride.
,
Molecular dynamics.
URI
http://etd.lib.metu.edu.tr/upload/12616147/index.pdf
https://hdl.handle.net/11511/22775
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Investigation of structural properties of boron carbide nanosystems under mechanical and thermal effects: molecular dynamics simulations
Şimşek, Yusuf; Erkoç, Şakir; Sezgi, Naime Aslı; Department of Micro and Nanotechnology (2014)
Structural properties of various boron-carbide nanosystems with different sizes have been investigated by performing classical molecular dynamics simulation techniques at several temperatures. Studied boron carbide systems are icosahedral nanoribbons and nanosheets, graphene like armchair and zigzag type of monolayer and bilayer boron carbide nanoribbons and nanosheets, armchair and zigzag type of boron carbide nanotubes, cubic form nanorods and nanosheets. Stillinger-Weber potential energy function paramet...
Quantum chemical investigation of thalidomide molecule
Erkoç, Şakir; Erkoc, F (Elsevier BV, 2005-04-14)
The structural and electronic properties of the thalidomide molecule have been investigated theoretically by performing semi-empirical molecular orbital (AM1) and density functional theory calculations. The geometry of the molecule has been optimized by AM1 method and the electronic properties of the molecule have been calculated by density functional theory in its ground state.
Simulation of crystallization and glass formation processes for binary Pd-Ag metal alloys
Kart, HH; Uludogan, M; Cagin, T; Tomak, Mehmet (2003-09-12)
Glass formation and crystallization process of Pd-Ag metallic alloys are investigated by means of molecular dynamics simulation. This simulation uses the quantum Sutton-Chen (Q-SC) potential to study structural and transport properties of Pd-Ag alloys. Cooling rates and concentration effects on the glass formation and crystallization of binary alloys considered in this work are investigated. Pd-Ag alloys show the glass structure at fast cooling rates while it crystallizes at slow cooling rates. Increment of...
Theoretical investigation of quercetin and its radical isomers
Erkoc, E; Erkoc, F; Keskin, N (Elsevier BV, 2003-08-01)
The structural and electronic properties of quercetin and its five radical isomers have been investigated theoretically by performing semi-empirical molecular orbital theory calculations. The geometry of the systems have been optimized and the electronic properties of the systems considered have been calculated by semi-empirical self-consistend-field molecular orbital theory at the level AM1 within UHF formalism in their ground state. Conclusions have been drawn by comparing with experimental results.
Investigation of structural, electronic, magnetic and lattice dynamical properties for XCoBi (X: Ti, Zr, Hf) Half-Heusler compounds
Surucu, Gokhan; IŞIK, MEHMET; CANDAN, ABDULLAH; Wang, Xiaotian; Güllü, Hasan Hüseyin (Elsevier BV, 2020-06-15)
Structural, electronic, magnetic, mechanical and lattice dynamical properties of XCoBi (X: Ti, Zr, Hf) Half-Heusler compounds have been investigated according to density functional theory and generalized gradient approximation. Among alpha, beta and gamma structural phases, gamma-phase structure has been found as the most stability characteristics depending on the calculated formation enthalpies, energy-volume dependencies and Cauchy pressures. Energy-volume plots of possible magnetic orders of gamma-phase ...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
B. Özdamar, “Investigation of the structural properties of low dimensional nanostructures : molecular dynamics simulations ,” M.S. - Master of Science, Middle East Technical University, 2013.