Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Some invariants of fields
Download
090713.pdf
Date
1999
Author
Koyuncu, Fatih
Metadata
Show full item record
Item Usage Stats
14
views
0
downloads
Cite This
URI
https://hdl.handle.net/11511/2282
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Some cardinal invariants on the space C-alpha (X, Y)
Onal, S; Vural, C (Elsevier BV, 2005-05-14)
Let C-alpha (X, Y) be the set of all continuous functions from X to Y endowed with the set-open topology where a is a hereditarily closed, compact network on X such that closed under finite unions. We define two properties (E1) and (E2) on the triple (alpha, X, Y) which yield new equalities and inequalities between some cardinal invariants on C-alpha (X, Y) and some cardinal invariants on the spaces X, Y such as:
Some procedures on operator ideals.
Önal, Süleyman; Department of Mathematics (1986)
Some permutations and complete permutation polynomials over finite fields
Ongan, Pinar; GÜLMEZ TEMÜR, BURCU (2019-01-01)
In this paper we determine b is an element of F-qn*. for which the polynomial f(x) = x(s+1) + bx is an element of F-qn[x] is a permutation polynomial and determine b is an element of F-gn* for which the polynomial f(x) = x(s+1)+ bx is an element of F(q)n [x] is a complete permutation polynomial where s = q(n)-1/t, t is an element of Z(+) such that t vertical bar q(n) - 1.
Some refined Schwarz-Pick lemmas
Kaptanoglu, HT (2002-01-01)
Some Inequalities Between Pairs of Marginal and Joint Bayesian Lower Bounds
Bacharach, Lucien; Chaumette, Eric; Fritsche, Carsten; Orguner, Umut (2019-01-01)
In this paper, tightness relations (or inequalities) between Bayesian lower bounds (BLBs) on the mean-squared-error are derived which result from the marginalization of a joint probability density function (pdf) depending on both parameters of interest and extraneous or nuisance parameters. In particular, it is shown that for a large class of BLBs, the BLB derived from the marginal pdf is at least as tight as the corresponding BLB derived from the joint pdf. A Bayesian linear regression example is used to i...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
F. Koyuncu, “Some invariants of fields,” Middle East Technical University, 1999.