Numerical modeling of 3 february 2002 Çay earthquake : ground motion simulation and intensity distribution

Can, Gizem
In seismically active regions strong ground motion estimation is essential for several purposes ranging from seismic design and analyses to disaster management. In regions of sparse seismic networks or seismic activity with long return periods, simulations become essential. This is particularly true when not only the peak ground motion parameters but the full time series of acceleration is required for earthquake engineering purposes. These simulations provide not only the earthquake engineering parameters but also give insight into the source, path and site effects observed during earthquakes. In this study, 3 February 2002 Çay earthquake is simulated with the stochastic finite-fault method. This mainshock could only be recorded at four strong ground motion stations within an epicentral distance of 200 km. Thus, first it is aimed to simulate these sparse records and validate the simulation parameters at the stations. Then, a regional prediction of potential ground motions that occurred during the mainshock is generated. Finally, through an empirical relationship proposed for Turkey, a simulated intensity distribution is also obtained and compared to the observed intensity and damage data. The results indicate that the mainshock is simulated effectively. This study and similar studies can be further developed and employed to assess potential ground motions in anticipated earthquakes such that necessary measures can be taken prior to large events to minimize future seismic losses in general.


Ground motion prediction equations based on simulated ground motions
Gür, Kader; Askan Gündoğan, Ayşegül; Kale, Özkan; Department of Earthquake Studies (2018)
Ground Motion Prediction Equations (GMPEs) are one of the key elements in seismic hazard assessment to estimate ground motion intensity measures by basically taking into account source, path and site effects. Most of the existing predictive models are derived from databases compiled from real (or observed) ground motion data. However, in data-poor regions, a novel practice to develop new GMPEs is to use simulated or hybrid ground motion datasets for performing reliable seismic hazard analysis. Simulations o...
Derivation of site-specific UHS based on simulated ground motions and its parametric effects on building fragility
Azari Sisi, Aida; Askan Gündoğan, Ayşegül; Department of Civil Engineering (2016)
Estimation of seismic demands is essential for the purpose of structural seismic design and analyses. It is significant to obtain reliable ground motion amplitudes to estimate seismic damage on structures in a realistic manner. The ground motion simulation methodologies provide a physical approach to estimate seismic demands in the regions with sparse recording data and scarce networks. This dissertation consists of two main parts: In the first part, site-specific uniform hazard spectrum (UHS) of Erzincan r...
Prediction of input energy spectrum: attenuation models and velocity spectrum scaling
Alici, F. S.; Sucuoğlu, Haluk (Wiley, 2016-10-25)
Recent improvements in performance-based earthquake engineering require realistic description of seismic demands and accurate estimation of supplied capacities in terms of both forces and deformations. Energy based approaches have a significant advantage in performance assessment because excitation and response durations, accordingly energy absorption and dissipation characteristics, are directly considered whereas force and displacement-based procedures are based only on the maximum response parameters. En...
Evaluation of the Ground Motion Scaling Procedures for Concrete Gravity Dams
SOYSAL, BERAT FEYZA; Ay, Bekir Özer; Arıcı, Yalın (Elsevier BV; 2017-09-13)
The seismic safety of dam structures is often evaluated using time history analyses conducted with a limited number of ground motions. The selection and scaling of the ground motions is usually the most effective factor determining the results of the safety assessment. The inherent variability in the ground motion as well as the difficulty of conducting the analyses for a large number of ground motions renders the selection as the most important factor in the analysis results. The guidelines for the nonline...
Seismic Reliability of Highway Transportation Systems
Ozcan, Naz Topkara; Yücemen, Mehmet Semih (2018-09-01)
Assessment of the reliability of lifelines under seismic loads requires particular attention, since the proper functioning of these systems during or after a destructive earthquake is very important. The main objective of this study is to investigate the system reliability of lifeline networks subjected to earthquake loads by concentrating on highway transportation systems consisting of viaducts, bridges, roads, and highways. Seismic reliability of a structural component is determined based on the seismic c...
Citation Formats
G. Can, “Numerical modeling of 3 february 2002 Çay earthquake : ground motion simulation and intensity distribution ,” M.S. - Master of Science, Middle East Technical University, 2014.