Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Comparative study on the orifice induced velocity field /
Download
index.pdf
Date
2014
Author
Çelebi, Sonat
Metadata
Show full item record
Item Usage Stats
157
views
107
downloads
Cite This
Orifices are important devices used in many hydraulic engineering applications. Therefore, investigation of flow characteristics upstream of orifices is a quite important phenomenon. One of the solution approaches is the potential flow solution. In this st udy, two different potential flow solutions presented by Shammaa et. al. and Bryant et. al are investigated and compared with the solution obtained by using computational fluid dy namics software, FLUENT. Both inviscid and volume of fluid (VOF) methods are used for the FLUENT solution. Solutions for the orifice induced velocity field upstream of the orifice are presented.
Subject Keywords
Holes.
,
Flow meters.
,
Hydraulic engineering.
,
Computational fluid dynamics.
URI
http://etd.lib.metu.edu.tr/upload/12617419/index.pdf
https://hdl.handle.net/11511/23596
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Numerical investigation of cavitating flow in variable area venturi on the basis of experimental data
Gümüşel, Hasan Tolg; Aksel, Mehmet Haluk.; Department of Mechanical Engineering (2019)
Variable area cavitating Venturi is a throttling device that can regulate the flow rate used in liquid and hybrid rocket motors. It has a pintle mechanism which adjusts the flow area by moving back and forth in the direction parallel to the outflow from the Venturi. The flow rate is independent of the downstream pressure due to cavitation. This makes the variable area cavitating Venturi a very critical component for liquid propellant rocket engine because it can create an isolation between the inlet and the...
Analysis and Control of Complex Flows in U-Bends using Computational Fluid Dynamics
Guden, Yigitcan; Yavuz, Mehmet Metin (2014-08-07)
Analysis and control of flow structure in U-bends are crucial since U-bends are used in many different engineering applications. As a flow parameter in U-bends, the ratio of inertial and centrifugal forces to viscous forces is called as Dean number. The increase of Dean number destabilizes the flow and leads to a three-dimensional flow consisting of stream wise parallel counter-rotating vortices (Dean vortices) stacked along the curved wall. Due to the curvature in U-bends, the flow development involves com...
Numerical analyses of flow characteristics in the vicinity of spillway aerators
Kurt, Can; Tokyay Sinha, Talia Ekin; Department of Civil Engineering (2016)
Spillway aerators are used in the spillways that are designed to carry medium to high discharges during their operation. Aerators are aimed to reduce the risk of cavitation in these high velocity flows. Most of the time, design of these aerators are based on physical models and experimental results. However, with the advancement in computational resources, it became possible to analyze the effect of aerators using computational fluid dynamics (CFD). To this end, three-dimensional numerical simulations of su...
A new look at oxide formation at the copper/electrolyte interface by in situ spectroscopies
Toparlı, Çiğdem; Erbe, Andreas (2015-01-01)
The widely used engineering material copper is a prototype of an electrochemically passive metal. In this work, the passive films on evaporated copper in 0.1 M NaOH are investigated in situ and operando by spectroscopic ellipsometry and Raman spectroscopy, both conducted during oxidation in potentiostatic step experiments. Oxide growth is initiated by jumping from a potential at which the surface is oxide-free to -0.1 V vs. Ag vertical bar AgCl vertical bar 3 M KCl (+0.11 V vs. standard hydrogen electrode, ...
A new formulation for the analysis of elastic layers bonded to rigid surfaces
Pinarbasi, Seval; Akyüz, Uğurhan; Mengi, Yalcin (Elsevier BV, 2006-07-01)
Elastic layers bonded to rigid surfaces have widely been used in many engineering applications. It is commonly accepted that while the bonded surfaces slightly influence the shear behavior of the layer, they can cause drastic changes on its compressive and bending behavior. Most of the earlier studies on this subject have been based on assumed displacement fields with assumed stress distributions, which usually lead to "average" solutions. These assumptions have somehow hindered the comprehensive study of s...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
S. Çelebi, “Comparative study on the orifice induced velocity field /,” M.S. - Master of Science, Middle East Technical University, 2014.