GPU based infrared signature modeling and scene simulation /

Download
2014
Kavak, Çağlar
The need of a fast and high fidelity scene simulation system is important for the development of modern infrared (IR) imaging systems. The performance testing of these systems is expensive and also depends on environment conditions. However, computer based systems can provide a cost effective alternative to field trials. Ray tracing provides physical accuracy and photo realism for scene generation. However, it has computationally intensive nature and conventionally used for non-real time applications. The development of Graphics Processor Unit (GPU) technology makes ray tracing more available for real time applications. NVIDIA OptiX ray tracing engine, runs on top of the NVIDIA CUDA parallel computing architecture, is primarily applied on visual band rendering and it has not been yet used in physics based scene simulation in the IR region. In this thesis work, an effort is made to model physics based IR scene simulation with OptiX. The developed system is tested on several benchmarks and also the effects of the signature components are analyzed. The results show that spectral dependency of the radiometric data and atmosphere effects are important and must be taken into account. Moreover, the results show that current GPU technology can generate high fidelity IR images at high frame rates.

Suggestions

High performance focal plane array technologies from short to long wavelength infrared bands
Arslan, Yetkin; Beşikci, Cengiz; Department of Electrical and Electronics Engineering (2014)
This thesis work covers the development of three different state of the art infrared sensor technologies: quantum well infrared photodetectors (QWIPs), HgCdTe sensors and extended InGaAs photodetectors. QWIP is the leading member of the quantum structure infrared photodetector family providing excellent uniformity and stability with field proven performance. The utilization of the InP/In0.48Ga0.52As multi-quantum well structure (instead of the standard AlGaAs/GaAs material system) for the implementation of ...
Low--‐cost uncooled infrared imaging sensor using mems and a modified standard cmos process
Gülden, Mehmet Ali; Akın, Tayfun; Eminoğlu, Selim; Department of Electrical and Electronics Engineering (2013)
The thesis presents a monolithically integrated low-­‐cost uncooled infrared imaging sensor using a MEMS process and a modified standard CMOS process. The designed sensor has an image format of 160×120 with a pixel pitch of 40 μm. The sensor is implemented with microbolometers that sense the infrared radiation in the 8-­‐12 μm spectral band, where the sensing elements in each pixel are formed with CMOS diodes to sense the temperature variation in the pixel by monitoring the change in the forward bias voltag...
Moving hot object detection in airborne thermal videos
Kaba, Utku; Akar, Gözde; Department of Electrical and Electronics Engineering (2012)
In this thesis, we present an algorithm for vision based detection of moving objects observed by IR sensors on a moving platform. In addition we analyze the performance of different approaches in each step of the algorithm. The proposed algorithm is composed of preprocessing, feature detection, feature matching, homography estimation and difference image analysis steps. First, a global motion estimation based on planar homography model is performed in order to compensate the motion of the sensor and moving ...
Thermal Infrared Hyperspectral Dimension Reduction Experiment Results For Global And Local Information Based Linear Discriminant Analysis
Sakarya, Ufuk (2015-05-19)
Thermal infrared hyperspectral image processing has become an important research topic in remote sensing. One of the research topics in thermal infrared hyperspectral image classification is dimension reduction. In this paper, thermal infrared hyperspectral dimension reduction experiment results for global and local information based linear discriminant analysis is presented. Advantages of the use of not only global pattern information, but also local pattern information are tested in thermal infrared hyper...
Metamaterial based wideband infrared absorbers
Üstün, Kadir; Sayan, Gönül; Department of Electrical and Electronics Engineering (2017)
In this thesis, design and simulation of wideband metamaterial absorbers are investigated in the long wave infrared (LWIR) and the mid-wave infrared (MWIR) bands of the electromagnetic spectrum. Use of LWIR and MWIR bands in absorber design is especially important for critical applications including the design of thermal cameras and thermal emitters. Integration of metamaterial topologies into the absorber structures provides flexibilities in design to enhance the operation efficiency of these devices by in...
Citation Formats
Ç. Kavak, “GPU based infrared signature modeling and scene simulation /,” M.S. - Master of Science, Middle East Technical University, 2014.