Formation of air-entraining vortices at horizontal water intakes /

Download
2014
Zaloğlu, Cihan
The goal of this study is to estimate the critical submergence depths of horizontal water intakes that have symmetrical and asymmetrical approach flow conditions by using empirical equations. Therefore a series of experiments were performed in a reservoir-pipe system dominated by gravity and controlled by a valve. On account of adjustable lateral walls, symmetrical and asymmetrical flow conditions were created at various Froude numbers. For a wide range of discharges and for three different pipe diameters, the critical depths of air-entraining vortices were observed. These observations were evaluated by dimensional analysis and dimensionless parameters were suggested. Finaly empirical equations were derived and the results were compared with similar studies in the literature.

Suggestions

Determination of hydraulic parameters of semi-infinite aquifers using Marquardt algorithm
Taşkan, Cüneyt; Önder, Halil; Department of Civil Engineering (2004)
In this study, transmissivity and storage coefficient of a semi-infinite, confined, homogeneous and isotropic aquifer, where the flow is one-dimensional and linear, are determined using Marquardt algorithm, considering two independent cases: constant drawdown in the adjacent stream; or constant discharge from the aquifer due to pumping at a constant rate. In the first case piezometric head and discharge measurements are utilized. Hydraulic diffusivity, which is the ratio of transmissivity to storage coeffic...
Determination of critical submergence depth at horizontal intakes
Haspolat, Emre; Göğüş, Mustafa; Köken, Mete; Department of Civil Engineering (2015)
The purpose of the study is to investigate the formation of air entraining vortices under both symmetrical and asymmetrical approach flow conditions in an experimental setup of a horizontal water intake structure composed of a reservoir-pipe system. To determine at which critical submergence the air entraining vortices forming; a series of experiments were conducted in the experimental setup with horizontal pipes of four different diameters. Approach channel side walls of the intake structure model are adju...
The effect of prismatic ruoghness elements on hydraulic jump
Evcimen, Taylan Ulaş; Tokyay, Nuray; Department of Civil Engineering (2005)
The objective of this study is to determine the effect of different roughness types and arrangements on hydraulic jump characteristics in a rectangular channel. Three different types of roughness were used along experiments. All of them had rectangular prism shapes and that were placed normal to the flow direction. To avoid cavitation, height of roughness elements were arranged according to level of the channel inlet, so that the crests of roughness elements would not be protruding into the flow. The effect...
Forced hydraulic jump on artificially roughened beds
Şimşek, Çağdaş; Tokyay, Nuray; Department of Civil Engineering (2006)
In the scope of the study, prismatic roughness elements with different longitudinal spacing and arrangements have been tested in a rectangular flume in order to reveal their effects on fundamental characteristics of a hydraulic jump. Two basic roughness types with altering arrangements have been tested. Roughness elements of the first type extends through the channel width against the flow with varying length and pitch ratios for different arrangements. The second type is of staggered essence and produced b...
Investigation of critical submergence at single and multiple- horizontal intake structures having air- entraining vortices
Gökmener, Serkan; Göğüş, Mustafa; Department of Civil Engineering (2015)
In this experimental study the variation of the critical submergence of air- entraining vortices with important flow and geometrical parameters were investigated at single and multiple- horizontal intake structures. In the scope of this study, three identical pipes of diameter Di=0.265 m were tested at a wide range of discharge with varying side wall clearances under symmetrical and asymmetrical approach flow conditions. Using dimensional analysis dimensionless equation was developed for critical submergenc...
Citation Formats
C. Zaloğlu, “Formation of air-entraining vortices at horizontal water intakes /,” M.S. - Master of Science, Middle East Technical University, 2014.