Design of a sequence based miRNA clustering method; analysis of fungal miRNAs and host organism target genes

Download
2014
Narcı, Kübra
MicroRNAs are small non-coding RNA molecules which contain 21-25 nucleotides, and function in post transcriptional regulation by inhibiting the translation of mRNA targets. miRNAs typically affect gene regulation by forming composite feed forward circuits (cFFCs) which also comprise a transcription factor (TF) and a target gene. By analyzing these cFFCs, the contribution of miRNAs in altering TF networks can be revealed. These contributions could either be the de-escalation of the target gene repertoire or to increase the redundancy through cFFC formation. To conduct the analysis, the connections between genes, miRNAs, and TFs are obtained using two datasets one of which is obtained from human myeloid leukemia cell line. These two datasets are also different from each other in terms of the numbers of TFs and miRNAs that are included in the networks and the significance of the predicted connections. The first dataset which contains connectivity information of a normal cell involves 83 TFs, 564 miRNAs and 5169 genes which construct 124,740 and 34,298 human-mouse conserved TF and miRNA regulatory connections, respectively. The second dataset which contains 137 miRNAs, 274 TFs and 6749 genes which are compiled from the FANTOM 4 database from which the total number of human-mouse conserved regulatory connections is identified as 6631 for miRNAs and 60969 for TFs. Then, in order to reveal the significance on a statistical level, the randomization tests are applied to the connectivity matrix. Obtaining the significance of miRNA-based cFFCs lead us to conclusions about the effect of miRNAs in fine-tuning gene regulatory networks and the evolutionary role of miRNAs in the cell regulation.

Suggestions

Analysis of motifs in microRNA-transcription factor gene regulatory networks
Sürün, Bilge; Acar, Aybar Can; Purutçuoğlu Gazi, Vilda; Department of Bioinformatics (2014)
MicroRNAs are small non-coding RNA molecules which contain 21-25 nucleotides, and function in post transcriptional regulation by inhibiting the translation of mRNA targets. miRNAs typically affect gene regulation by forming composite feed forward circuits (cFFCs) which also comprise a transcription factor (TF) and a target gene. By analyzing these cFFCs, the contribution of miRNAs in altering TF networks can be revealed. These contributions could either be the de-escalation of the target gene repertoire or ...
Live-cell imaging of Pol II promoter activity to monitor gene expression with RNA IMAGEtag reporters
SHIN, Ilchung; RAY, Judhajeet; Gupta, Vinayak; İlgü, Müslüm; Beasley, Jonathan; BENDICKSON, Lee; MEHANOVIC, Samir; Kraus, George A.; Nilsen-Hamilton, Marit (Oxford University Press (OUP), 2014-01-01)
We describe a ribonucleic acid (RNA) reporter system for live-cell imaging of gene expression to detect changes in polymerase II activity on individual promoters in individual cells. The reporters use strings of RNA aptamers that constitute IMAGEtags (Intracellular MultiAptamer GEnetic tags) that can be expressed from a promoter of choice. For imaging, the cells are incubated with their ligands that are separately conjugated with one of the FRET pair, Cy3 and Cy5. The IMAGEtags were expressed in yeast from ...
Development of sandwich type nucleic acid array platform for the detection of micrornas in breast cancer
Atılgan, Seren; Öktem, Hüseyin Avni; Department of Biology (2014)
MicroRNAs are small non-coding RNAs that are involved in important regulatory pathways such as differentiation, development, metabolism, cell proliferation, and cell death. Several recent research show that deregulated expression of miRNAs has crucial roles in disease pathologies, mainly in cancer. Therefore, it is likely that the usage of miRNAs as diagnostic and prognostic biomarkers in patients and the development of various techniques for the detection of microRNA in clinical research will become widesp...
Molecular dynamics simulations and coupled nucleotide substitution experiments indicate the nature of A center dot A base pairing and a putative structure of the coralyne-induced homo-adenine duplex
Joung, In Suk; Persil Çetinkol, Özgül; HUD, Nicholas V.; Cheatham, Thomas E. (Oxford University Press (OUP), 2009-12-01)
Coralyne is an alkaloid drug that binds homo-adenine DNA (and RNA) oligonucleotides more tightly than it does Watson-Crick DNA. Hud's laboratory has shown that poly(dA) in the presence of coralyne forms an anti-parallel duplex, however attempts to determine the structure by NMR spectroscopy and X-ray crystallography have been unsuccessful. Assuming adenine-adenine hydrogen bonding between the two poly(dA) strands, we constructed 40 hypothetical homo-(dA) anti-parallel duplexes and docked coralyne into the s...
Integration of clavaminate synthase 2 gene into the chromosome of an industrial strain of Streptomyces Clavuligerus for enhanced clavulanic acid production
Vanlı, Güliz; Özcengiz, Gülay; Özkan, Melek; Department of Biotechnology (2010)
Streptomyces clavuligerus is a gram-positive, filamentous bacterium which has a great ability to produce secondary metabolites including isopenicillin N, cephamycin C and a beta-lactamase inhibitor clavulanic acid. Clavulanic acid (CA) which is a bicyclic beta-lactam, inhibits most of class A beta-lactamases by binding irreversibly to the serine hydroxyl group at the active center of beta-lactamases and resulting in the stable acyl-enzyme complexes. Clavaminate synthase (CAS) is one of the best characterize...
Citation Formats
K. Narcı, “Design of a sequence based miRNA clustering method; analysis of fungal miRNAs and host organism target genes,” M.S. - Master of Science, Middle East Technical University, 2014.