Modeling and simulation of coefficient of friction on gear teeth contacts

Download
2014
Okşayan, Yeliz
Friction is defined as the resistance to motion between two dry or lubricated contacted surfaces. The contact load, contact geometry, surface speeds, surface roughness parameters and oil properties affect the lubrication condition or regime. The purpose of this thesis is to develop a mixed EHL (Elastohydrodynamic Lubrication) model that is capable of calculating the variation of friction coefficient between gear teeth contacts. Gear systems operate commonly in mixed EHL regime where the elastic deformations of the surfaces are in the order of the film thickness. In this regime, metal to metal asperity contact and hydrodynamic film thickness occurs together. In the model, the effects of deformation of surface asperities, oil viscosity change with pressure, slide to roll ratio, surface roughness parameters are taken into account. The model is capable of plotting the Stribeck curve that specifies the regimes with friction coefficient and Lubrication number. For higher loads, due to the shift on the Stribeck curve, lower coefficient of friction is observed for the same Lubrication number. In the present study, the model is adopted to non-Gaussian asperity height distributions since the surfaces do not always have Gaussian distributions in practice. vi Applying the Weibull distribution, the mixed EHL model is modified with the contact pressure calculation that is load carried by asperities. The effect of load and surface roughness parameters on the Stribeck curve is analyzed. The effect of Skewness and Kurtosis parameters on the mixed EHL regime is investigated and for comparison, the Stribeck curves are plotted for both Gaussian and non-Gaussian asperity height distributions. Eventually, the mixed EHL model for non-Gaussian surfaces is applied to a spur gear pair to determine the frictional power loss. For smaller Sk values and for higher Ku values than the Gaussian values, the friction coefficient values are lower giving low power loss than the Gaussian asperity summit distribution. Therefore, the gear tooth surfaces are to be machined giving smaller Sk than zero and Ku value that is higher than 2.72.

Suggestions

Determination of rough surface contact stiffness coefficient
Yıldırım, Emine Gülşah; Akkök, Metin; Department of Mechanical Engineering (2017)
In this thesis, the resistance against deformation under the effect of loading, which is simply called as stiffness, is investigated for the contacting bodies. The contact stiffness at mixed lubrication regime is tried to be found for line contact. Because of the mixed lubrication regime, the overall contact stiffness is investigated in two major parts as asperity stiffness and oil film stiffness which are considered to be connected in parallel in a spring model. Also, overall stiffness is calculated by reg...
Simulation of laminar microchannel flows with realistic 3D surface roughness
Akbaş, Batuhan; Sert, Cüneyt; Department of Mechanical Engineering (2019)
Effects of flow development and surface roughness on the pressure drop characteristics of laminar liquid flowsinside microchannels are investigated numerically using OpenFOAM. Channels with square cross section of 500 μm×500 μmand length of 80 mm are studied. Top surface of the channels are artificially roughened using thespatial frequency methodto create 8 different roughness profiles. Scaling the relative roughness ({u1D700}) values of each profile to three different values (1.0, 2.5and5.0 %),a total of 2...
Time varying control of magnetohydrodynamic duct flow
Evcin, Cansu; Uğur, Ömür; Tezer, Münevver (2021-09-01)
Optimal control of the unsteady, laminar, fully developed flow of a viscous, incompressible and electrically conducting fluid is considered under the effect of a time varying magnetic field B0(t) applied in the direction making an angle with the y–axis. Thus, the coefficients of convection terms in the Magnetohydrodynamics (MHD) equations are also time-dependent. The coupled time-dependent MHD equations are solved by using the mixed finite element method (FEM) in space and the implicit Euler scheme in time....
Convergence, stability, and numerical solution of unsteady free convection magnetohydrodynamical flow between two slipping plates
Arslan, Sinem (2021-09-01)
In this study, the unsteady free convection magnetohydrodynamical flow of a viscous, incompressible, and electrically conducting fluid between two horizontally directed slipping plates is considered. The external magnetic filed is applied uniformly in the y-direction and the fluid is assumed to be of low conductivity so that the induced magnetic field is negligible. So the relevant variables, that is, the velocity and the temperature, depend only on one coordinate, the y-axis. The governing equations of vel...
BOUNDARY-ELEMENT METHOD SOLUTION OF MHD FLOW IN A RECTANGULAR DUCT
Tezer, Münevver (Wiley, 1994-05-30)
The magnetohydrodynamic (MHD) flow of an incompressible, viscous, electrically conducting fluid in a rectangular duct with an external magnetic field applied transverse to the flow has been investigated. The walls parallel to the applied magnetic field are conducting while the other two walls which are perpendicular to the field are insulators. The boundary element method (BEM) with constant elements has been used to cast the problem into the form of an integral equation over the boundary and to obtain a sy...
Citation Formats
Y. Okşayan, “Modeling and simulation of coefficient of friction on gear teeth contacts,” M.S. - Master of Science, Middle East Technical University, 2014.