Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Modelling, transient simulation and parametric study of parabolic trough collector with thermal energy storage
Download
index.pdf
Date
2014
Author
Akba, Tufan
Metadata
Show full item record
Item Usage Stats
281
views
128
downloads
Cite This
In this thesis, a mathematical model of a parabolic trough collector field with a two-tank molten salt thermal energy storage is developed. The model is built in TRNSYS and by using MatLab, novel valve and thermal energy storage control algorithms are implemented. The model is sensitive to transient states inside the components and variations in weather and demand. Optimum parabolic trough collector length is determined for different insolation values to show the relation between direct normal insolation and collector string length. The mathematical model is used in an economic model, which contains initial investment costs of the parabolic trough collector field and thermal energy storage costs only. Depending on the economic model, different sizes of plants are created at fixed initial investment costs by changing collector field area and storage size in the mathematical model. A parametric study is done by using economic model data and by simulating the mathematical model at various initial investment costs, two different locations in Turkey, and four different load profiles. As result of the parametric study, maximum solar fraction cases are selected and a generalized trend is observed. Effect of thermal energy storage on solar fraction is discussed and the change in thermal energy storage with optimum plant size is investigated. After an optimum investment, linear increment behavior of solar fraction is disappears and increases asymptotically by increasing the plant and/or storage size. Above this limit, hybridizing with other energy sources are advised. Later in the thesis, significance of load profile is emphasized, which should be one of the major design parameters for solar powered energy systems.
Subject Keywords
Solar energy.
,
Solar heating.
,
Solar collectors.
,
Heat storage devices.
,
Solar thermal energy.
URI
http://etd.lib.metu.edu.tr/upload/12618151/index.pdf
https://hdl.handle.net/11511/24181
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Modelling and performance analysis of linear fresnel collector for process heat generation for ice cream factory in Konya
Singh, Rahul; Baker, Derek Keıth; Tarı, İlker; Department of Mechanical Engineering (2017)
In this thesis, a linear Fresnel collector has been designed to supply solar heat for industrial process. Firstly, optical analysis using ray tracing is done to determine the effects of collector’s parameters, such as height of receiver, mirror width and profile, gap between adjacent rows and slope deviation. Afterwards, one-dimensional thermal model is presented which predicts surface temperatures of receiver components and heat loss. The results obtained from both optical and thermal studies are then benc...
Conceptual design and heat transfer investigation of a dense granular flow solar receiver
Johnson, Evan Fair; Baker, Derek Keıth; Tarı, İlker; Department of Mechanical Engineering (2017)
Solid particles have previously been proposed as an alternative to molten salt as a heat transfer and heat storage medium for concentrating solar power plants. While previous solid particle solar receiver designs use fluidized or falling particles, the new type of receiver proposed in this thesis uses a gravity-driven flow of particles in a dense granular flow regime. Through experimentation with sand, the flow and heat transfer properties were studied in two geometries: vertical tubular and vertical parall...
Numerical investigation of circulating fluidized bed riser hydrodynamics for concentrating solar thermal receiver applications
Bilyaz, Serhat; Tarı, İlker; Department of Mechanical Engineering (2015)
Various heat transfer fluids and thermal storage materials are considered for concentrating solar power systems to improve the storage capability of the system which compensates the fluctuating behavior of the solar resources. Solid particles can be a good alternative since they have high sensible heat capacity. In addition, they are cheap, environmentally benign and chemically and mechanically stable at high temperatures. In this thesis, hydrodynamics of circulating fluidized bed solar receiver was numeric...
Modeling, transient simulations and parametric studies of parabolic trough collectors with thermal energy storage
Akba, Tufan; Baker, Derek Keıth; Güvenç Yazıcıoğlu, Almıla (Elsevier BV, 2020-3-15)
For investigating the system response of parabolic trough collector heat generating system, a plant with parabolic trough collector field and two-tank molten salt thermal energy storage model with component-level control algorithm is developed for managing various working conditions. The model is transient inside the components and responds with hourly weather and demand data. The main purpose of this work is providing an alternative design methodology that focuses on the collector field, and storage size b...
Hydrodynamic ve Thermal Modelling of Circulating Fluidized Bed Solar Receivers
Bilyaz, Serhat; Tarı, İlker (2016-11-17)
The riser tube solar receiver of a circulating fluidized bed solid particle absorption solar thermal energy system was numerically modeled for analyzing hydrodynamic and heat transfer behaviors of the solid particles in the riser. Hydrodynamics of the model is validated by comparing radial distribution of void fractions with an experimental study. For the heat transfer from the opaque walls of the receiver that is heated to high temperatures by the solar rays concentrated by the heliostat field, a simple fr...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
T. Akba, “Modelling, transient simulation and parametric study of parabolic trough collector with thermal energy storage,” M.S. - Master of Science, Middle East Technical University, 2014.