Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Numerical simulation of advective Lotka-Volterra systems by discontinuous Galerkin method
Download
index.pdf
Date
2014
Author
Aktaş, Senem
Metadata
Show full item record
Item Usage Stats
217
views
101
downloads
Cite This
In this thesis, we study numerically advection-diffusion-reaction equations arising from Lotka-Volterra models in river ecosystems characterized by unidirectional flow. We consider two and three species models which include competition, coexistence and extinction depending on the parameters. The one dimensional models are discretized by interior penalty discontinuous Galerkin model in space. For time discretization, fully implicit backward Euler method and semi-implicit IMEX-BDF methods are used. Numerical simulations for various set up parameters reveal more insight in the complicated dynamics by advective Lotka-Volterra systems.
Subject Keywords
Lotka-Volterra equations.
,
Galerkin methods.
,
Numerical analysis.
,
Differential equations.
URI
http://etd.lib.metu.edu.tr/upload/12618397/index.pdf
https://hdl.handle.net/11511/24377
Collections
Graduate School of Applied Mathematics, Thesis
Suggestions
OpenMETU
Core
Numerical solution of the Fisher’s equation with discontinous Galerkin method
Özsoy, Fehmi; Karasözen, Bülent; Department of Scientific Computing (2015)
In this thesis, the Fisher’s equation is discretized in space with the symmetric interior point discontinuous Galerkin (SDIPG). As time integrator Kahan’s method is used, which is n efficient linearly implicit time integrator for PDE with quadratic nonlinearities like the Fisher’s equation. Numerical results for the SIPG method, Kahan’s method and mid-point method confirm the theoretically predicted convergence orders in space and time. Travelling waves with steep fronts are numerically well resolved in rea...
Discontinuous galerkin finite elements method with structure preserving time integrators for gradient flow equations
Sarıaydın Filibelioğlu, Ayşe; Karasözen, Bülent; Department of Scientific Computing (2015)
Gradient flows are energy driven evolutionary equations such that the energy decreases along solutions. There have been surprisingly a large number of well-known partial differential equations (PDEs) which have the structure of a gradient flow in different research areas such as fluid dynamics, image processing, biology and material sciences. In this study, we focus on two systems which can be modeled by gradient flows;Allen-Cahn and Cahn-Hilliard equations. These equations model the phase separation in mat...
Numerical studies of Korteweg-de Vries equation with random input data
Üreten, Mehmet Alp; Yücel, Hamdullah; Uğur, Ömür; Department of Scientific Computing (2018)
Differential equations are the primary tool to mathematically model physical phenomena in industry and natural science and to gain knowledge about its features. Deterministic differential equations does not sufficiently model physically observed phenomena since there exist naturally inevitable uncertainties in nature. Employing random variables or processes as inputs or coefficients of the differential equations yields a stochastic differential equation which can clarify unnoticed features of physical event...
Inverse problems for parabolic equations
Baysal, Arzu; Çelebi, Okay; Department of Mathematics (2004)
In this thesis, we study inverse problems of restoration of the unknown function in a boundary condition, where on the boundary of the domain there is a convective heat exchange with the environment. Besides the temperature of the domain, we seek either the temperature of the environment in Problem I and II, or the coefficient of external boundary heat emission in Problem III and IV. An additional information is given, which is the overdetermination condition, either on the boundary of the domain (in Proble...
Asymptotic integration of impulsive differential equations
Doğru Akgöl, Sibel; Ağacık, Zafer; Özbekler, Abdullah; Department of Mathematics (2017)
The main objective of this thesis is to investigate asymptotic properties of the solutions of differential equations under impulse effect, and in this way to fulfill the gap in the literature about asymptotic integration of impulsive differential equations. In this process our main instruments are fixed point theorems; lemmas on compactness; principal and nonprincipal solutions of impulsive differential equations and Cauchy function for impulsive differential equations. The thesis consists of five chapters....
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
S. Aktaş, “Numerical simulation of advective Lotka-Volterra systems by discontinuous Galerkin method,” M.S. - Master of Science, Middle East Technical University, 2014.