Numerical simulations of eutrophication processes in İzmir Bay with a coupled three dimensional eco-hydrodynamic model

Download
2013
Yelekçi, Özge
A three dimensional time-dependent coupled ecosystem model is applied to İzmir Bay for the first time. Delft3D modelling suite’s FLOW and ECO modules are adapted and tuned for the region. A reference model with a time frame of three years is produced that represents the current physical and biogeochemical status of the bay. Model skill assessment methods are used as a measure of model performance and to address the shortcomings of it. The hydrodynamics model is able to produce physical features in terms of seasonality and spatial distribution within reasonable ranges, whereas the ecosystem model has certain discrepancies which can be reduced with improved quality of model inputs, such as open boundary conditions, and fresh water and nutrient fluxes. The reference model is used as a tool with predictive capacity to assess the ecosystem response of the bay to possible changes it may undergo in the future. Five nutrient enrichment/reduction scenarios are constructed to predict the reactions of the bay to changing external inputs of DIN and PO4. Results suggest that both physical and biogeochemical properties of the bay show strong horizontal gradients between outer and inner regions in which both natural and anthropogenic influences are effective. It is revealed that Outer bays are mostly occupied by waters originating from the oligotrophic Aegean Sea, while eutrophicated inner regions are mainly controlled by local influences such as increased fresh water inputs and excessive wastewater discharges. Results of the nutrient enrichment/reduction scenarios suggest that the N-limited Inner and Middle bays and the P-limited Outer bays, give contrasting reactions to changes in inputs of DIN and PO4 such that the former is more sensitive to DIN input whereas the latter is more sensitive to PO4 input. Due to the existence of these two contrasting environments in the bay, availability of one nutrient is dependent on the availability of the other, therefore treatment of both should be considered in parallel. Among the scenarios tested in this study, the best possible option to reduce eutrophication in İzmir Bay is to prevent the increase of PO4 input and to reduce the DIN input simultaneously. These outcomes are aimed to provide a scientific insight for coastal policy makers and environmental managers on how changes in anthropogenic influences can impact the marine ecosystem of the bay.

Suggestions

Parallel Computation of 3-D Viscous Flows on Hybrid Grids
Ilgaz, Murat; Tuncer, İsmail Hakkı (2009-10-12)
In this study, a newly developed parallel finite-volume solver for 3-D viscous flows on hybrid grids is presented. The boundary layers in wall bounded viscous flows are discretized with hexahedral cells for improved accuracy and efficiency, while the rest of the domain is discretized by tetrahedral and pyramidal cells. The computations are performed in parallel in a computer cluster. The parallel solution algorithm with hybrid grids is based on domain decomposition which is obtained using the graph partitio...
Assessment of the trophic status of the Mersin bay waters, Northeastern Mediterranean
Kaptan, Mehmet Salih; Tuğrul, Süleyman; Department of Chemical Oceanography (2013)
Identifying the spatial and temporal variability of eutrophication related indicators such as Chlorophyll-a (Chl-a), oxygen saturation (DO%), dissolved inorganic nitrogen (DIN) and total phosphorus (TP), as a measure of the potential pressures and productivity, were measured within the Mersin Bay, a wide shelf region of the Cilician Basin located in the Northeastern Mediterranean Sea. This study aims to characterize the trophic status of the water masses in the eastern shelf waters of the bay fed by river d...
Numerical simulation of scour at the rear side of a coastal revetment
Şentürk, Barış Ufuk; Guler, Hasan Gokhan; Baykal, Cüneyt (2023-05-01)
This paper presents the results of a numerical modeling study on the scouring of unprotected rear side material of a rubble mound coastal revetment due to the overtopping of solitary-like waves utilizing a coupled hydro-morphodynamic computational fluid dynamics (CFD) model. Three cases having various wave heights are tested with six different turbulence models together with different wall functions. The hydrodynamic results (free-surface elevations, overtopping volumes, and jet thicknesses) and morphologic...
Computer Simulations on the grain boundary grooving and cathode edge displacement in bamboo-like metallic interconnects
Ogurtani, Tarik Omer; Akyildiz, Oncu (2006-04-21)
The process of grain boundary (GB) grooving and cathode edge displacement invoked by the surface drift-diffusion along the sidewalls in sandwich type thin film bamboo lines are simulated by introducing a new mathematical model. In the absence of the electric field, the computer studies on the triple junction kinetics show that it obeys the first order reaction kinetics at early transient stage, which is followed by the familiar time law as t(1/4), at the steady state regime. The applied electric field (EF) ...
Statistical analysis of second-order relations of 3D structures
Kalkan, Sinan; Wörgötter, Florentin; Kruger, Norbert (2007-03-08)
Algorithmic 3D reconstruction methods like stereopsis or structure from motion fail to extract depth at homogeneous image structures where the human visual system succeeds and is able to estimate depth. In this paper, using chromatic 3D range data, we analyze in which way depth in homogeneous structures is related to the depth at the bounding edges. For this, we first extract the local 3D structure of regularly sampled points, and then, analyze the coplanarity relation between these local 3D structures. ...
Citation Formats
Ö. Yelekçi, “Numerical simulations of eutrophication processes in İzmir Bay with a coupled three dimensional eco-hydrodynamic model,” M.S. - Master of Science, Middle East Technical University, 2013.