Statistical analysis of second-order relations of 3D structures

2007-03-08
Kalkan, Sinan
Wörgötter, Florentin
Kruger, Norbert
Algorithmic 3D reconstruction methods like stereopsis or structure from motion fail to extract depth at homogeneous image structures where the human visual system succeeds and is able to estimate depth. In this paper, using chromatic 3D range data, we analyze in which way depth in homogeneous structures is related to the depth at the bounding edges. For this, we first extract the local 3D structure of regularly sampled points, and then, analyze the coplanarity relation between these local 3D structures. We can statistically show that the likelihood to find a certain depth at a homogeneous image patch depends on the distance between the image patch and its edges. Furthermore, we find that this prediction is higher when there is a second edge which is proximate to and coplanar with the first edge. These results allow deriving statistically based prediction models for depth extrapolation into homogeneous image structures. We present initial results of a model that predicts depth based on these statistics.
Proceedings of the Second International Conference on Computer Vision Theory and Applications

Suggestions

3D object recognition using scale space of curvatures
Akagündüz, Erdem; Ulusoy, İlkay; Department of Electrical and Electronics Engineering (2011)
In this thesis, a generic, scale and resolution invariant method to extract 3D features from 3D surfaces, is proposed. Features are extracted with their scale (metric size and resolution) from range images using scale-space of 3D surface curvatures. Different from previous scale-space approaches; connected components within the classified curvature scale-space are extracted as features. Furthermore, scales of features are extracted invariant of the metric size or the sampling of the range images. Geometric ...
Coarse-to-fine surface reconstruction from silhouettes and range data using mesh deformation
Sahillioğlu, Yusuf; Yemez, Y. (2010-03-01)
We present a coarse-to-fine surface reconstruction method based on mesh deformation to build watertight surface models of complex objects from their silhouettes and range data. The deformable mesh, which initially represents the object visual hull, is iteratively displaced towards the triangulated range surface using the line-of-sight information. Each iteration of the deformation algorithm involves smoothing and restructuring operations to regularize the surface evolution process. We define a non-shrinking...
Image-based extraction of material reflectance properties of a 3D rigid object
Erdem, ME; Erdem, IA; Yilmaz, UG; Atalay, Mehmet Volkan (2004-01-01)
In this study, an appearance reconstruction method based on extraction of material reflectance properties of a three-dimensional (3D) object from its two-dimensional (2D) images is explained. One of the main advantages of this system is that the reconstructed object can be rendered in real-time with photorealistic quality in varying illumination conditions. The reflectance of the object is decomposed into diffuse and specular components. While the diffuse component is stored in a global texture, the specula...
Extraction of 3D transform and scale invariant patches from range scans
Akagunduz, Erdern; Ulusoy, İlkay (2007-06-22)
An algorithm is proposed to extract transformation and scale invariant 3D fundamental elements from the surface structure of 3D range scan data. The surface is described by mean and Gaussian curvature values at every data point at various scales and a scale-space search is performed in order to extract the fundamental structures and to estimate the location and the scale of each fundamental structure. The extracted fundamental structures can later be used as nodes in a topological graph where the links betw...
3d face representation and recognition using spherical harmonics
Tunçer, Fahri; Halıcı, Uğur; Department of Electrical and Electronics Engineering (2008)
In this study, a 3D face representation and recognition method based on spherical harmonics expansion is proposed. The input data to the method is range image of the face. This data is called 2.5 dimensional. Input faces are manually marked on the two eyes, nose and chin points. In two dimensions, using the marker points, the human face is modeled as two concentric half ellipses for the selection of region of interest. These marker points are also used in three dimensions to register the faces so that the n...
Citation Formats
S. Kalkan, F. Wörgötter, and N. Kruger, “Statistical analysis of second-order relations of 3D structures,” presented at the Proceedings of the Second International Conference on Computer Vision Theory and Applications, Barcelona, İspanya, 2007, Accessed: 00, 2022. [Online]. Available: https://hdl.handle.net/11511/96590.