Experimental determination of tool wear in routing and trimming of CFRP composites

Download
2015
Peker, Zühal
In order to fulfill growing demand for lighter aircraft, Carbon fiber reinforced polymers (CFRP) have been developed, which differ from metals with regards to their machinability characteristics. The main problem in machining process is the damage caused by delamination of CFRP materials which need to be both cut and shorn of fibers at the same time, since they are remarkably abrasive in nature. This research aims at accessing the most appropriate cutting condition with less tool wear in routing and trimming operations for CFRP composite material. In the current study, a diamond coated interlocked tool with 12 cutting edges and 10 millimeter diameter is used for routing and trimming CFRP composite materials which has unidirectional carbon fibers. The experiments are carried out by altering the spindle speed and feed per tooth value while keeping the radial depth of cut constant. The experiments were done using 3-axis vertical machining center. At the beginning, 16 feed per tooth values were chosen in 5000 rpm to perform the machining test. The cutting forces were obtained from rotary type dynamometer during cutting operations. Tool wear and delamination measurements were done using an optical microscope. From the test results, 3 feed per tooth values were observed at 5000 rpm in terms of tool wear and delamination. The best cutting conditions for high surface quality are obtained for high spindle speeds of 5000 rpm and low feed per tooth values of about 0.02, 0.03 and 0.04 mm/ tooth.

Suggestions

MECHANICAL PROPERTIES OF REPAIRED CARBON FIBER REINFORCED POLYMER COMPOSITES
Sonat, Emine Evren; Özerinç, Sezer; Department of Mechanical Engineering (2021-12-10)
Carbon fiber reinforced polymer (CFRP) composites are increasingly used in the aerospace industry due to their high specific strength compared to conventional metallic materials. However, a significant shortcoming of these composites is their increased susceptibility to damage. Structural repair is a common method to restore the load-carrying capacity of a damaged part when the damage size exceeds the pre-defined tolerances. Scarf and stepped bonded repair methods are the primary choice for cases that requi...
Behavior of CFRP confined concrete specimens under temperature cycles and sustained loads
Erdil, Barış; Akyüz, Uğurhan; Yaman, İsmail Özgür; Department of Civil Engineering (2012)
The application of carbon fiber reinforced polymers (CFRP) is one of the effective retrofitting and strengthening methods that is used worldwide and is starting to be used in Turkey as well because they have high strength and high modulus in the fiber direction, have very low coefficient of thermal expansion when compared to concrete and steel and are known not to corrode. Since FRPs are lightweight, their mass can be neglected when compared to concrete and steel. However, before proposing this material as ...
Meso-scale finite element modelling of carbon nanotube reinforced polymer composites
Haydar, Altay; Esat, Volkan; Mechanical Engineering (2021-12)
Carbon nanotube (CNT) reinforced polymer composites (CNTRPs) are promising materials which can be utilized in a variety of industries. Several experimental research studies have been conducted to determine the mechanical properties of CNTRPs, however results have not been conclusive. In this study, meso-scale representative volume elements (RVEs) of straight and coiled CNT (CCNT) reinforced epoxy composites were analysed by using commercial finite element analysis software MSC Marc-Mentat. CNTs were randoml...
Experimental investigation of the effect of CNT addition on the strength of CFRP curved composite beams
Arca, M.A.; Uyar, I.; Çöker, Demirkan (2015-01-01)
Carbon nanotubes (CNT) have been attracting attention as a toughening material in composite matrix due to their excellent mechanical properties. However, superior properties of CNTs have not yet been realized in the strengthening of composites against fracture. This study focuses on investigating the effect of CNT variation in the epoxy resin on the strength of curved composite beams. Specimens are [0/90] fabric carbon/epoxy composite laminates manufactured by hand layup technique 3 % wt CNT fractions in th...
Mechanical, electrical and thermal properties of carbon fiber reinforced poly(dimethylsiloxane)/polypyrrole composites
Cakmak, G; Kucukyavuz, Z; Kucukyavuz, S; Cakmak, H (2004-01-01)
Conductive and flexible carbon fiber (CF) reinforced polydimethylsiloxane (PDMS)/polypyrrole (PPy) composites were synthesized electrochemically. Electrochemical synthesis was performed at + 1.1 V using p-toluenesulfonic acid as supporting electrolyte and water as solvent. Composites were characterized by thermal gravimetric analysis, scanning electron microscopy (SEM), conductivity measurements and mechanical tests. Conductivities of composites were observed in the range of 2.2-4 S/cm. SEM studies show tha...
Citation Formats
Z. Peker, “Experimental determination of tool wear in routing and trimming of CFRP composites,” M.S. - Master of Science, Middle East Technical University, 2015.