Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Local improvements to reduced-order approximations of PDE-constrained optimization problems
Download
index.pdf
Date
2015
Author
Akman, Tuğba
Metadata
Show full item record
Item Usage Stats
241
views
162
downloads
Cite This
Optimal control problems (OCPs) governed partial differential equations (PDEs) arise in environmental control problems, optimal control of fluid flow, petroleum reservoir simulation, laser surface hardening of steel, parameter estimation and in many other applications. Although the OCPs governed by elliptic and parabolic problems are investigated theoretically and numerically in several papers, the studies concerning the optimal control of evolutionary diffusion-convection-reaction (DCR) equation and Burgers equation are quite rare. In this study, we consider the optimal control problem governed by the unsteady diffusion-convection-reaction equation and Burgers equation without control constraints. These problems gain importance, especially when the diffusive term is small. In such cases, the numerical solution exhibit interior/boundary layers and classical finite element method (FEM) is not efficient for derivation of an accurate numerical solution and methods requiring higher regularity of the solution might not be practical. Therefore, we solve these problems using variational time discretization method, which is a stable, superconvergent technique requiring less regularity when compared to the methods of the same order; and symmetric interior penalty Galerkin (SIPG) with upwinding in space, which flexes inter element continuity of the solution. We provide a priori error estimates for space-time discontinuous Galerkin method and present numerical findings. An accurate and stable numerical solution requires a fine grid/mesh, which increases the dimension of the discrete problem, so the computational time. In case of perturbations in the data, full-order model (FOM) is required to be solved for each new parameter in the data set. In case of optimization problems, FOM associated to the differential equations must be resolved after updating the control. Therefore, we use a model-order reduction (MOR) technique that eliminates the necessity of the solution of the FOM for each parameter and that enables us to solve the problem in a fast way. We use one of the most popular and successful MOR techniques, namely the proper orthogonal decomposition (POD) method. The idea behind the POD method is to derive a new basis spanning the space whose dimension is lower than the finite element space. Then, the FOM is projected onto the low-dimensonal space using the new optimal POD basis as we proceed in Galerkin projection. In addition, a priori error estimates associated to reduced-order model (ROM) based on space-time dG method are proven and numerical results are shown. The POD basis is computed using the snapshots of a particular problem which is interpreted by a mathematical model and data. Because there is a link between the data and the snapshots, some perturbation in the data may lead to larger changes in the snapshots depending on the problem at hand. This leads the nominal/baseline POD basis, which depends on the nominal/baseline parameters, not to approximate the perturbed problem accurately. In such cases, one has to solve the full problem for each parameter in the data set again and regenerate the POD basis. This approach is expensive especially for nonlinear problems or optimal control problems which requires the solution of a set of differential equations. Thus, POD sensitivities are used to enrich the low-dimensional subspace for a wider range of parameters and the quantity of interest is the diffusion term $\epsilon$, the convection term $\beta$ and the reaction term $r$. We generate two new bases, i.e. extrapolated POD (ExtPOD) and expanded POD (ExpPOD) and compare these bases in terms of advantages and discuss the main drawbacks of them.
Subject Keywords
Mathematical optimization.
,
Differential equations, Partial.
,
Orthogonal decompositions.
,
Galerkin methods.
,
Control theory.
URI
http://etd.lib.metu.edu.tr/upload/12618963/index.pdf
https://hdl.handle.net/11511/24811
Collections
Graduate School of Applied Mathematics, Thesis
Suggestions
OpenMETU
Core
Optimal control in fluid flow problems with POD applications to FEM solutions
Evcin, Cansu; Uğur, Ömür; Department of Scientific Computing (2018)
This study investigates the numerical solutions of optimal control problems constrained by the partial differential equations (PDEs) of laminar fluid flows and heat transfer with the model order reduction (MOR). This is achieved by the three objectives of the thesis: obtaining accurate solutions, controlling the dynamics of the fluid and reducing the computational cost. Fluids exposed to an external magnetic field and the heat transfer are governed by the magnetohydrodynamics (MHD) and energy equations. Con...
Optimal control of gas pipelines via infinite-dimensional analysis
Durgut, I; Leblebicioğlu, Mehmet Kemal (1996-05-15)
A general optimal control approach employing the principles of calculus of variations has been developed to determine the best operating strategies for keeping the outlet pressure of gas transmission pipelines around a predetermined value while achieving reasonable energy consumption. The method exploits analytical tools of optimal control theory. A set of partial differential equations characterizing the dynamics of gas flow through a pipeline is directly used The necessary conditions to minimize the speci...
Distributed Optimal Control Problems Governed by Coupled Convection Dominated PDEs with Control Constraints
Yücel, Hamdullah (2013-08-30)
We study the numerical solution of control constrained optimal control problems governed by a system of convection diffusion equations with nonlinear reaction terms, arising from chemical processes. Control constraints are handled by using the primal-dual active set algorithm as a semi-smooth Newton method or by adding a Moreau-Yosida-type penalty function to the cost functional. An adaptive mesh refinement indicated by a posteriori error estimates is applied for both approaches.
Discontinuous Galerkin Methods for Unsteady Convection Diffusion Equation with Random Coefficients
Çiloğlu, Pelin; Yücel, Hamdullah (null; 2018-10-21)
Partial differential equations (PDEs) with random input data is one of the most powerful tools to model oil and gas production as well as groundwater pollution control. However, the information available on the input data is very limited, which cause high level of uncertainty in approximating the solution to these problems. To identify the random coefficients, the well–known technique Karhunen Loeve ` (K–L) expansion has some limitations. K–L expansion approach leads to extremely high dimensional systems wi...
Adaptive Symmetric Interior Penalty Galerkin (SIPG) method for optimal control of convection diffusion equations with control constraints
Yücel, Hamdullah; Karasözen, Bülent (2014-01-02)
In this paper, we study a posteriori error estimates of the upwind symmetric interior penalty Galerkin (SIPG) method for the control constrained optimal control problems governed by linear diffusion-convection-reaction partial differential equations. Residual based error estimators are used for the state, the adjoint and the control. An adaptive mesh refinement indicated by a posteriori error estimates is applied. Numerical examples are presented for convection dominated problems to illustrate the theoretic...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
T. Akman, “Local improvements to reduced-order approximations of PDE-constrained optimization problems,” Ph.D. - Doctoral Program, Middle East Technical University, 2015.