Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Optimal control of gas pipelines via infinite-dimensional analysis
Date
1996-05-15
Author
Durgut, I
Leblebicioğlu, Mehmet Kemal
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
245
views
0
downloads
Cite This
A general optimal control approach employing the principles of calculus of variations has been developed to determine the best operating strategies for keeping the outlet pressure of gas transmission pipelines around a predetermined value while achieving reasonable energy consumption. The method exploits analytical tools of optimal control theory. A set of partial differential equations characterizing the dynamics of gas flow through a pipeline is directly used The necessary conditions to minimize the specific performance index come from the infinite-dimensional model. The optimization scheme has been tested on a pipeline subject to stepwise change in demand.
Subject Keywords
Optimal control
,
Optimization
,
Gas pipelines
URI
https://hdl.handle.net/11511/39709
Journal
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS
DOI
https://doi.org/10.1002/(sici)1097-0363(19960515)22:9<867::aid-fld383>3.0.co;2-#
Collections
Department of Electrical and Electronics Engineering, Article
Suggestions
OpenMETU
Core
Kalman-filter-based observer design around optimal control policy for gas pipelines
Durgut, I; Leblebicioğlu, Mehmet Kemal (1997-01-30)
Seeking the optimal operating policy by an off-line controller for pipelines carrying natural gas has an inherent state estimation problem associated with deviations from demand forecast. This paper presents a Kalman-filter-based observer for the real-time estimation of deviations from the states previously obtained by an off-line controller optimally, around an expected demand function. The observer is based on the linearized form of the non-linear partial differential equations which are the state space r...
Local improvements to reduced-order approximations of PDE-constrained optimization problems
Akman, Tuğba; Karasözen, Bülent; Department of Scientific Computing (2015)
Optimal control problems (OCPs) governed partial differential equations (PDEs) arise in environmental control problems, optimal control of fluid flow, petroleum reservoir simulation, laser surface hardening of steel, parameter estimation and in many other applications. Although the OCPs governed by elliptic and parabolic problems are investigated theoretically and numerically in several papers, the studies concerning the optimal control of evolutionary diffusion-convection-reaction (DCR) equation and Burger...
Distributed Optimal Control Problems Governed by Coupled Convection Dominated PDEs with Control Constraints
Yücel, Hamdullah (2013-08-30)
We study the numerical solution of control constrained optimal control problems governed by a system of convection diffusion equations with nonlinear reaction terms, arising from chemical processes. Control constraints are handled by using the primal-dual active set algorithm as a semi-smooth Newton method or by adding a Moreau-Yosida-type penalty function to the cost functional. An adaptive mesh refinement indicated by a posteriori error estimates is applied for both approaches.
State estimation of transient flow in gas pipelines by a Kalman filter-based estimator
Durgut, İsmail; Leblebicioğlu, Mehmet Kemal (2016-09-01)
In this study, real-time estimation of flow rate and pressure along natural gas pipelines under transient flow condition is aimed. The estimation of the internal states of gas pipelines is based on a recursive discrete data filtering algorithm called the discrete Kalman filter. The state space representation of the transient flow in gas pipelines, which is required for the filtering algorithm, is established by a discrete form of the nonlinear partial differential equations (PDE's) describing the characteri...
Software development for analyzing fluid transients in pipelines
Habibi Topraghghaleh, Saber; Bozkuş, Zafer; Department of Civil Engineering (2020)
A computer program is developed to analyze and simulate fluid transients in hydraulic systems contributing to finding practical solutions for unsteady flow conditions in pipelines. This program is built up using C sharp programming language in the visual studio platform. In the software, the method of characteristics is used for solving the non-linear partial differential equations of the transient flow. This software’s primary purpose is to find quick solutions for a phenomenon called water hammer, which h...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
I. Durgut and M. K. Leblebicioğlu, “Optimal control of gas pipelines via infinite-dimensional analysis,”
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS
, pp. 867–879, 1996, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/39709.