Active vibration control of a smart sandwich plate via piezoelectric sensors and actuators

Aksoy, Yunus Tansu
In this study, the first three vibration modes of a smart sandwich plate, which are 1st out-of-plane bending, 1st torsion and 2nd out-of-plane bending modes, are aimed to be suppressed by using active vibration control techniques comprising a pole placement controller. Smart sandwich plate is composed of a passive sandwich composite plate and piezoelectric patches (PZT Lead-Zirconate-Titanate) attached with epoxy adhesive at specific locations determined by using finite element modelling and analysis. Those PZT patches on the smart sandwich plate are then used both as actuators and sensors. Before manufacturing the smart sandwich plate, the locations of PZT patches are determined by considering the vibrational characteristics of the sandwich plate. Following this, an experimental modal analysis is performed to verify the finite element analysis results. Additionally, the model is updated according to the experimental results. Then, an algorithm is adapted in order to determine the spatial locations of the PZT patches and parallel to the obtained results they are attached to the passive sandwich plate. After the manufacturing process of the smart sandwich plate, a system identification is performed experimentally by sending an input signal covering the frequencies of interest and recording the response through a designated sensor. Having obtained the frequency response function of the smart sandwich plate experimentally, a transfer function is fitted in the frequency domain. Finally, various active vibration controllers are designed. Those controllers are then validated through simulations and applied in an experimental environment via pole placement method combined with various observers and filters to suppress the free and forced vibrations of the smart sandwich plate at the aforementioned resonance frequencies. The three different designed controllers are observed to suppress the vibrations in each of the aimed mode successfully by working individually and also operating together without compromising the individual performance of the controllers in the vibration suppression of the smart sandwich plate.


Active vibration suppression of a flexible beam via sliding mode and H ∞ control
Itik, Mehmet; Salamci, Metin U.; Demet Ulker, F.; Yaman, Yavuz (2005-12-01)
n this study, sliding mode and H. control techniques are applied to a flexible beam in order to suppress some of the vibration modes. The beam is a clamped-free flexible structure having piezoelectric (PZT) patches as actuators and a laser displacement sensor for measuring the tip point deflection. The beam is modeled in two different ways for each control algorithm. To implement sliding mode control (SMC), Euler-Bernoulli beam model is used and a finite dimensional LTI model is formed by using assumed mode...
External Search Coil as a Means of Measuring Rotor Speed of an Induction Motor
Özlü Ertan, Hatice Gülçin; Keysan, Ozan (2009-07-03)
The study in this paper investigates whether the air gap harmonics can be identified by using an external search coil placed on the frame of an induction motor. For this purpose the study focuses on the prediction of rotor speed of an induction motor from external search coil emf, using spectral analysis techniques. In the first stage of the study the type of search coil which maximizes the induced emf is sought, also the position of the coil on the induced emf is investigated. Several motors are tested wit...
Active Vibration Suppression of a Smart Beam by Using a Fractional Order Control
Onat, Cem; Şahin, Melin; Yaman, Yavuz (2011-06-22)
In this study, a fractional order controller was designed and experimentally applied for the active vibration suppression of a smart beam. The smart beam was a cantilever aluminium beam equipped with eight symmetrically located surface-bonded PZT (Lead-Zirconate-Titanate) patches which were used both as sensor and actuator. For this particular application, a group of PZT patches closed to the root of the beam was used as actuators in the bimorph configuration and a single patch was nominated as a sensor. Fr...
Design of a compliant mechanism to amplify the stroke of a piezoelectric stack actuator
Keskin, Tamer; Özgen, Gökhan Osman; Department of Mechanical Engineering (2013)
Main objective of this study is to design a compliant mechanism with high frequency and high mechanical amplification ratio to be used for amplifying the stroke of a piezostack actuator. In this thesis, first of all, related literature is investigated and then alternative conceptual designs are established utilizing the mechanisms found in literature survey. Once best conceptual design is selected, detailed design of this mechanism is done. For detailed design of the compliant mechanism, topology optimizati...
Active vibration suppression of a smart beam via self sensing piezoelectric actuator
Uğur, Arıdoğan; Şahin, Melin; Yaman, Yavuz; Volkan, Nalbantoğlu (null; 2009-08-17)
In this paper, an active vibration suppression of a smart beam using self-sensing piezoelectric actuator is presented. The smart beam is composed of a cantilever aluminium beam with four surface-bonded piezoelectric patches symmetrically located both side of the beam. Piezoelectric materials can transform mechanical deformation to electric signal and vice versa. This property of piezoelectric materials enables them to be used as an actuator and a sensor. In self-sensing actuator configuration, the piezoelec...
Citation Formats
Y. T. Aksoy, “Active vibration control of a smart sandwich plate via piezoelectric sensors and actuators,” M.S. - Master of Science, Middle East Technical University, 2015.