Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Dynamic modelling and simulation of a wind turbine
Download
index.pdf
Date
2015
Author
Altuğ, Ayşe Hazal
Metadata
Show full item record
Item Usage Stats
340
views
87
downloads
Cite This
In this thesis, a dynamic model for a horizontal axis wind turbine is developed for an upwind configuration using the MATLAB/Simulink environment. Blade Element Momentum Theory is used to model the rotor. It is assumed that the rotor blades are rigid and wind speed is uniform. Aerodynamic and gravitational forces are calculated as distributed loads. Verification of the model is done by using the LMS Samtech, Samcef for Wind Turbines software. Aerodynamic properties of the blades, sectional loads and moments acting on the blades sections and performance outputs are compared for verification. Generator torque controller is designed to maximize power conversion at below rated regime. For above rated regime, a pitch controller is designed to keep generator speed at rated value. .
Subject Keywords
Wind turbines.
,
Wind turbines
URI
http://etd.lib.metu.edu.tr/upload/12619224/index.pdf
https://hdl.handle.net/11511/24943
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Genetic algorithm based aerodynamic shape optimization of wind turbine rotor blades using a 2-d panel method with a boundary layer solver
Polat, Özge; Tuncer, İsmail Hakkı; Sezer Uzol, Nilay; Department of Aerospace Engineering (2011)
This thesis presents an aerodynamic shape optimization methodology for rotor blades of horizontal axis wind turbines. Genetic Algorithm and Blade Element Momentum Theory are implemented in order to find maximum power production at a specific wind speed, rotor speed and rotor diameter. The potential flow solver, XFOIL, provides viscous aerodynamic data of the airfoils. Optimization variables are selected as the sectional chord length, the sectional twist and the blade profiles at root, mid and tip regions of...
Design optimization of whiffletree systems for wind turbine blade testing
Yeniceli, Süleyman Cem; Kayran, Altan; Department of Aerospace Engineering (2014)
In this thesis, the design optimization of a whiffletree system, which is used to simulate the loads for a selected design load case by applying discrete test loads on a wind turbine blade, is performed. Firstly, distributed design loads are calculated for the selected load case by using Microsoft (MS) EXCEL. Then, the test load optimization is performed with the Solver Add-In of the MS EXCEL to find the optimum locations of the load saddles which give the best moment distribution along the blade span accor...
INVESTIGATION AND OPTIMIZATION OF WINGLETS FOR HAWT ROTOR BLADES
Elfarra, Monier A.; Akmandor, I. Sinan; Sezer Uzol, Nilay (2011-03-25)
The main purpose of this paper is to optimize winglet geometry by using CFD with Genetic Algorithm and study its effects on power production. For validation and as a baseline rotor, the NREL Phase VI wind turbine rotor blade is used. The Reynolds-Averaged Navier-Stokes equations are solved and different turbulence models including the Spalart-Allmaras, k-epsilon Launder-Sharma, k-epsilon Yang-Shih and SST k-omega models are used and tested. The results of the power curve and the pressure distribution at dif...
Dynamic modeling, control and adaptive envelope protection system for horizontal axiswind turbines
Şahin, Mustafa; Yavrucuk, İlkay; Department of Aerospace Engineering (2018)
In this thesis study, a wind turbine envelope protection system is introduced to protect turbines throughout the below and above rated regions. The proposed protection system, which is based on a neural network, adapts to various turbines and operational conditions. It can keep the turbine within pre-defined envelope limits whenever a safe operation is about to be violated. The avoidance is realized by control limiting technique applied to the blade pitch controller output, thereby adjusting the blade pitch...
Aerodynamic optimization of horizontal axis wind turbine blades by using CST method, BEM theory and genetic algorithm
Oğuz, Keriman; Sezer Uzol, Nilay; Department of Aerospace Engineering (2019)
In this thesis, an aerodynamic design and optimization study for rotor airfoils and blades of Horizontal Axis Wind Turbines (HAWTs) is performed by using different airfoil representations and genetic algorithm. Two airfoil representations, the Class-Shape Transformation (CST) method and the Parametric Section (PARSEC) method, are used for the airfoil geometry designs. Their aerodynamic data is obtained by a potential flow solver software, XFOIL. The Blade Element Momentum (BEM) theory is used to calculate t...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
A. H. Altuğ, “Dynamic modelling and simulation of a wind turbine,” M.S. - Master of Science, Middle East Technical University, 2015.