Dynamic modelling and simulation of a wind turbine

Download
2015
Altuğ, Ayşe Hazal
In this thesis, a dynamic model for a horizontal axis wind turbine is developed for an upwind configuration using the MATLAB/Simulink environment. Blade Element Momentum Theory is used to model the rotor. It is assumed that the rotor blades are rigid and wind speed is uniform. Aerodynamic and gravitational forces are calculated as distributed loads. Verification of the model is done by using the LMS Samtech, Samcef for Wind Turbines software. Aerodynamic properties of the blades, sectional loads and moments acting on the blades sections and performance outputs are compared for verification. Generator torque controller is designed to maximize power conversion at below rated regime. For above rated regime, a pitch controller is designed to keep generator speed at rated value. .

Suggestions

Genetic algorithm based aerodynamic shape optimization of wind turbine rotor blades using a 2-d panel method with a boundary layer solver
Polat, Özge; Tuncer, İsmail Hakkı; Sezer Uzol, Nilay; Department of Aerospace Engineering (2011)
This thesis presents an aerodynamic shape optimization methodology for rotor blades of horizontal axis wind turbines. Genetic Algorithm and Blade Element Momentum Theory are implemented in order to find maximum power production at a specific wind speed, rotor speed and rotor diameter. The potential flow solver, XFOIL, provides viscous aerodynamic data of the airfoils. Optimization variables are selected as the sectional chord length, the sectional twist and the blade profiles at root, mid and tip regions of...
Design optimization of whiffletree systems for wind turbine blade testing
Yeniceli, Süleyman Cem; Kayran, Altan; Department of Aerospace Engineering (2014)
In this thesis, the design optimization of a whiffletree system, which is used to simulate the loads for a selected design load case by applying discrete test loads on a wind turbine blade, is performed. Firstly, distributed design loads are calculated for the selected load case by using Microsoft (MS) EXCEL. Then, the test load optimization is performed with the Solver Add-In of the MS EXCEL to find the optimum locations of the load saddles which give the best moment distribution along the blade span accor...
Dynamic modeling, control and adaptive envelope protection system for horizontal axiswind turbines
Şahin, Mustafa; Yavrucuk, İlkay; Department of Aerospace Engineering (2018)
In this thesis study, a wind turbine envelope protection system is introduced to protect turbines throughout the below and above rated regions. The proposed protection system, which is based on a neural network, adapts to various turbines and operational conditions. It can keep the turbine within pre-defined envelope limits whenever a safe operation is about to be violated. The avoidance is realized by control limiting technique applied to the blade pitch controller output, thereby adjusting the blade pitch...
Investigation of inertial support limits in wind turbines and the effects on the power system stability
Duymaz, Erencan; Keysan, Ozan; Department of Electrical and Electronics Engineering (2019)
In this study, the inertial support implementation is studied for variable speed wind turbines with a full-scale power electronics. To increase the active power as desired, Machine Side Converter is modified with an additional control loop. In the first part of the thesis, active power of the wind turbine is increased to the limits and the maximum achievable active power is found out to be restricted by the wind speed. It is found that the wind turbine can increase its output power by 40% of rated power in ...
Aerodynamic optimization of horizontal axis wind turbine blades by using CST method, BEM theory and genetic algorithm
Oğuz, Keriman; Sezer Uzol, Nilay; Department of Aerospace Engineering (2019)
In this thesis, an aerodynamic design and optimization study for rotor airfoils and blades of Horizontal Axis Wind Turbines (HAWTs) is performed by using different airfoil representations and genetic algorithm. Two airfoil representations, the Class-Shape Transformation (CST) method and the Parametric Section (PARSEC) method, are used for the airfoil geometry designs. Their aerodynamic data is obtained by a potential flow solver software, XFOIL. The Blade Element Momentum (BEM) theory is used to calculate t...
Citation Formats
A. H. Altuğ, “Dynamic modelling and simulation of a wind turbine,” M.S. - Master of Science, Middle East Technical University, 2015.