Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Frequently Asked Questions
Frequently Asked Questions
Browse
Browse
By Issue Date
By Issue Date
Authors
Authors
Titles
Titles
Subjects
Subjects
Communities & Collections
Communities & Collections
Development of bolted flange design tool based on finite element analysis and artificial neural network
Download
index.pdf
Date
2015
Author
Yıldırım, Alper
Metadata
Show full item record
Item Usage Stats
14
views
8
downloads
In bolted flange connections, commonly utilized in aircraft engine designs, structural integrity and minimization of the weight are achieved by the optimum combination of the design parameters utilizing the outcome of many structural analyses. Bolt size, number of bolts, bolt locations, casing thickness, flange thickness, bolt preload, and axial external force are some of the critical design parameters in bolted flange connections. Theoretical analysis and finite element analysis (FEA) are two main approaches to perform the structural analysis of the bolted flange connection. Theoretical approaches require the simplification of the geometry and are generally over safe. In contrast, finite element analysis is more reliable but at the cost of high computational power. In this work, the methodology developed for the iterative analyses of bolted flange utilizes artificial neural network approximation of FEA database formed with more than ten thousands of non-linear analyses involving contact. In the design tool, the structural analysis database is created by combining parametric variables by each other. The number of intervals for each variable in the upper and lower range of the variables has been determined with the parameters correlation study in which the significance of parameters are evaluated. As a follow-up study, the design tool is compared with FEA and the theoretical approach of ESDU.
Subject Keywords
Flanges.
,
Contact mechanics.
,
Finite element method.
URI
http://etd.lib.metu.edu.tr/upload/12619289/index.pdf
https://hdl.handle.net/11511/24944
Collections
Graduate School of Natural and Applied Sciences, Thesis