Assessment of production strategies of a gas condensate field using a black oil simulator: a case study

Parlaktuna, Burak
Condensates are low-density liquids that are produced along with the gas phase from wet gas or gas-condensate reservoirs. Availability of these liquids makes gas-condensate reservoirs more profitable than the other gas reservoirs since condensates are gasoline like fluids with API gravities more than 45°. Although the condensate production is profitable, the management of gas-condensate reservoirs is challenging. Due to their nature, condensates condense and separate from the gas if the pressure drops below the dew point pressure. The condensation causes an increase in the amount of liquid drop-out especially around the wellbores where the maximum pressure drop occurs. The condensates around the wellbores decreases or even blocks the flow of gas into the wells due relative permeability effects. Therefore it is required to prevent condensation in the reservoir which can be done by keeping the reservoir pressure high. On the other hand, bottom hole well pressures should be low enough to have a good production rate. This dissertation aims to assess different production and injection strategies and find out the optimal one by constructing static and dynamic reservoir models and simulate the production strategies for 50 more years in addition to the 45 years of production history of a South Caspian Basin field. The starting point of this study is to construct a static model based on an existing reservoir which consist of three blocks with eleven producing layers. The required fluid model is obtained using available fluid properties by the help of a compositional PVT equation of state software prior the preparation of dynamic or flow model. The production history of the field is used to construct a base for the simulations. The volumetric calculations are compared with the available data. Different production scenarios are applied including production at different rates, injection of water and gas separately and simultaneously as well. It was observed that keeping the pressure high with water injection in the reservoir but using the driving force of gas at the same time leads the minimum amount of liquid drop-out in the reservoir.


Modelling reinjection of two-phase non-condensable gases and water in geothermal wells
Leontidis, Vlasios; Niknam, Pouriya H.; Durgut, Ismail; Talluri, Lorenzo; Manfrida, Giampaolo; Fiaschi, Daniele; Akın, Serhat; Gainville, Martin (2023-03-01)
Steam production from high enthalpy geothermal systems is frequently accompanied by the emission of non-condensable gases (NCGs), initially dissolved in the liquid phase or mixed in the vapour phase at depth in the reservoir. Capturing and reinjecting geothermal gases (CO2, CH4, NH3, H2S, H2, …) together with condensed steam leads to a significant improvement of the environmental profile of geothermal power systems and helps with reservoir recharge and pressure support. Nowadays, there are several ongoing p...
Estimation of the formation temperature from the inlet and outlet mud temperatures while drilling geothermal formations
Tekin, Sema; Akın, Serhat; Department of Petroleum and Natural Gas Engineering (2010)
Formation temperature is an important parameter in geothermal drilling since it affects all the components of the system such as drilling fluid, drilling operations and equipment through mud temperatures. The main objective of this study is to estimate the formation temperatures of five geothermal wells in Germencik-Ömerbeyli geothermal field by using inlet and outlet mud temperatures obtained during drilling. For this purpose, GTEMP, a wellbore thermal simulation model is used to simulate the process of dr...
Use of equivalent single porosity medium and automated lumped fluid composition simulation in naturally fractured gas condensate reservoirs
Ertürk, Mehmet Cihan; Sınayuç, Çağlar; Department of Petroleum and Natural Gas Engineering (2018)
Each naturally fractured gas condensate reservoir is unique and needs special interests for an accurate modelling study. Ordinarily, it is a very difficult task to conduct a fast and well-characterized simulation study and predict the performance of such reservoirs in view of the complicated thermodynamic behavior, the complex fluid composition, dual porosity behavior and significant computational time requirement. The numerical simulation of fractured gas condensate reservoirs offer remarkable potential fo...
Experimental research on in-tube condensation under steady-state and transient conditions
Tanrikut, A; Yesin, O (2005-01-01)
In this research study, in-tube condensation in the presence of air was investigated experimentally at a heat exchanger of countercurrent type for different operating conditions. The test matrix for the steady-state condition covers the range of pressures P = 1.8 to 5.5 bars, vapor Reynolds numbers Re, = 45 000 to 94 000, and inlet air mass fraction values Xi = 0 to 52%. The effect of air manifests itself by a reduction in the local heat flux and the local heat transfer coefficient. The local heat transfer ...
Investigation of gas seepages in Thessaloniki mud volcano in the Mediterranean Sea
MEREY, ŞÜKRÜ; Longinos, Sotirios Nik (2018-09-01)
Gas seepages are commonly observed in marine environment. Especially, gas seepages due to anthropogenic gas hydrate dissociation are big concerns recently. In the Eastern Mediterranean Sea, Thessaloniki mud volcano was detected. Gas hydrate stability conditions in this mud volcano is very fragile. For this reason, in this study, gas seepages were predicted by using HydrateResSim at different seafloor temperature increments varying from 1 to 5 degrees C and different sediment permeability values varying from...
Citation Formats
B. Parlaktuna, “Assessment of production strategies of a gas condensate field using a black oil simulator: a case study,” M.S. - Master of Science, Middle East Technical University, 2015.