Semi-empirical modeling and optimization of metal sputtering processes

Download
2015
Çimen, Özge
Continuous miniaturization of thin film based electronic devices is the major motivator for research in physical vapor deposition (PVD) applications especially in military and aerospace applications. The challenges in the good quality thin film is the requirement for good mechanical, optical and electrical properties and high thickness uniformity across wafer. In this study, the magnetron sputtering system was investigated which is a commonly used technique to deposit thin films. Deposition and heat transfer mechanism of this deposition system is the main focus of this thesis in which both modeling and experimental approaches were used. In this study, a modeling approach was used to understand and characterize the operation conditions of the PVD system. A model was implemented to eliminate the geometrical factor to decrease the number of experiments. Using the theoretical knowledge and the findings from the model, experiments were designed for the operational conditions including sputtering power, argon flow and system pressure interactions. Produced thin films were evaluated by means of thickness, deposition rate, resistivity and thickness uniformity. Then, a thermal model was described to estimate the substrate temperature during the sputtering and heating processes. Since plasma interactions create significant complexity in the model, experiments were designed to complete the modeling studies. The heater model includes detailed energy balances for conduction and radiation mechanisms. Thermal model for the sputtering process uses the energy balances for conduction mechanism and heat flux input obtained from the experiments. For the data analysis and design of experiments (DOE) study JMP software and for the modeling studies MATLAB and ANSYS tools were used.

Suggestions

Real-time imaging of vortex-antivortex annihilation in Bi2Sr2CaCU2O8+delta single crystals by low temperature scanning hall probe microscopy
Dede, M; Oral, Ahmet; Yamamoto, T; Kadowaki, K; Shtrikman, H (2006-03-01)
Vortices in superconductors play an important role in operating limits and applications of the superconductors. Scanning Hall probe microscopes have proven themselves to be quantitative and non-invasive tools for investigating magnetic samples down to 50 nm scale. Penetration of vortices in high quality single crystal Bi2Sr2CaCu1O8+delta superconductor has been studied in real-time with single vortex resolution at 77 K using a low temperature scanning Hall probe microscope (LT-SHPM). Vortices have been obse...
Semi-empirical SCF-MO calculations for the structural and electronic properties of single-wall InP nanotubes
Erkoç, Şakir (Elsevier BV, 2004-05-14)
The structural and electronic properties of armchair and zigzag models of single-wall InP nanotubes have been investigated qualitatively by performing semi-empirical self-consistent-field molecular orbital calculations at the level of PM3 method within the RHF formulation. It has been found that these structures are stable and they may be used as conducting nanowires in nanodevice and optoelectronic applications.
Transparent thin film heaters based on silver nanowire networks
Ergün, Orçun; Ünalan, Hüsnü Emrah; Department of Metallurgical and Materials Engineering (2015)
Transparent thin film heaters are used in various de-fogging and de-icing applications because of their ability to convert electrical energy to thermal energy while allowing to transmit solar light through a surface. Indium tin oxide (ITO) is the conventional transparent conducting material used in transparent thin film heaters. However, due to scarcity of indium and its increasing prices worldwide, coupled with the inflexibility of ITO, alternative materials are being investigated. Silver nanowire networks...
Modeling and optimization of PECVD processes and equipment used for manufacturing thin film photovoltaic devices
Özkol, Engin; Kıncal, Serkan; Department of Chemical Engineering (2014)
Plasma enhanced chemical vapor deposition (PECVD) is a common technique used in thin film based device fabrication. Operation conditions of a PECVD reactor need to be optimized in terms of deposition conditions as well as plasma cleaning procedures to deliver desired deposited material qualities. In addition, interactions with external support systems such as gas lines and cabinet, compressors and utility production units need to be understood and characterized. Modeling, whether based on fundamental princi...
FABRICATION AND CHARACTERIZATION OF TiO2 THIN FILM FOR DEVICE APPLICATIONS
HOSSEINI, AREZOO; GÜLLÜ, HASAN HÜSEYİN; COŞKUN, EMRE; Parlak, Mehmet; Erçelebi, Ayşe Çiğdem (2019-07-01)
Titanium oxide (TiO2) film was deposited by rectification factor (RF) magnetron sputtering technique on glass substrates and p-Si (111) wafers to fabricate n-TiO2/p-Si heterojunction devices for the investigation of material and device properties, respectively. The structural, surface morphology, optical and electrical properties of TiO(2 )film were characterized by means of scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray diffraction (XRD), UV-visual (UV-Vis) spectral and dark curre...
Citation Formats
Ö. Çimen, “Semi-empirical modeling and optimization of metal sputtering processes,” M.S. - Master of Science, Middle East Technical University, 2015.