Topology control vector based forwarding algorithm for underwater acoustic networks

Download
2015
Yazgı, İlkay
The communication range of underwater acoustic sensor networks (UASN) is limited by the underwater environment. Acoustic networks with huge number of sensors may have long communication range with appropriate protocols in literature. On the other hand, especially, the networks including small number of nodes have communication problems for long ranges. To challenge this problem, topology control in underwater acoustic networks is a promising solution. In this study, a novel approach, Topology Control Vector Based Forwarding Protocol (TC-VBF) is introduced and developed. In the TC-VBF, when the communication with source node and target node becomes a problem due to range, the actor node will help the packet transfer. The actor node is moving to the mid-point of the distance between master node and sink node. When the packet transfer is successfully finished, the actor node moves back to previous position. Existing MAC, transport and routing protocols and topology control algorithms are classified and analyzed. A novel algorithm, TC-VBF, is presented and evaluated comparatively with alternative routing protocols. It shows better performance for reliable data transfer and long communication range.

Suggestions

Topology Control Vector Based Forwarding Algorithm for Underwater Acoustic Networks
Yazgi, Ilkay; Baykal, Buyurman (2016-05-19)
The communication range of underwater acoustic networks (UAN) is limited by the properties of underwater environment. Especially, the networks including small number of nodes have communication problems for long ranges. To challenge this problem, topology control in UAN is a promising solution. In this study, Topology Control Vector Based Forwarding Algorithm (TC-VBF) is proposed. The TC-VBF uses nodes' position to determine the forwarding vector. In this work, the TC-VBF is evaluated comparatively with alt...
Self-deployment of mobile underwater acoustic sensor networks for maximized coverage and guaranteed connectivity
ŞENEL, FATİH; Akkaya, Kemal; Erol-Kantarci, Melike; Yilmaz, Turgay (2015-11-01)
Self-deployment of sensors with maximized coverage in Underwater Acoustic Sensor Networks (UWASNs) is challenging due to difficulty of access to 3-D underwater environments. The problem is further compounded if the connectivity of the final network is desired. One possible approach to this problem is to drop the sensors on the water surface and then move them to certain depths in the water to maximize the 3-0 coverage while maintaining the initial connectivity. In this paper, we propose a fully distributed ...
Underwater channel modeling for sonar applications
Epçaçan, Erdal; Çiloğlu, Tolga; Department of Electrical and Electronics Engineering (2011)
Underwater acoustic channel models have been studied in the context of communication and sonar applications. Acoustic propagation channel in an underwater environment exhibits multipath, time-variability and Doppler e ects. In this thesis, multipath fading channel models, underwater physical properties and sound propagation characteristics are studied. An underwater channel model for sonar applications is proposed. In the proposed model, the physical characteristics of underwater environment are considered ...
Path planning and localization for mobile anchor based wireless sensor networks
Erdemir, Ecenaz; Tuncer, Temel Engin; Department of Electrical and Electronics Engineering (2017)
In wireless sensor networks, sensors with limited resources are distributed in a wide area. Localizing the sensors is an important problem. Anchor nodes with known positions are used for sensor localization. A simple and efficient way of generating anchor nodes is to use mobile anchors which have built-in GPS units. In this thesis, a single mobile anchor is used to traverse the region of interest to communicate with the sensor nodes and identify their positions. Therefore planning the best trajectory for th...
Routing and security in wireless sensor networks, an experimental evaluation of a proposed trust based routing protocol
Chalabianloo, Niaz; İşler, Veysi; Department of Computer Engineering (2013)
Satisfactory results obtained from sensor networks and the ongoing development in electronics and wireless communications have led to an impressive boost in the number of applications based on WSNs. Along with the growth in popularity of WSNs, previously implemented solutions need further improvements and new challenges arise which need to be solved. One of the main concerns regarding WSNs is the existence of security threats against their routing operations. Likelihood of security attacks in a structure su...
Citation Formats
İ. Yazgı, “Topology control vector based forwarding algorithm for underwater acoustic networks,” M.S. - Master of Science, Middle East Technical University, 2015.