Enhancement of storage stability of wheat germ oil by encapsulation

Download
2015
Karadeniz, Meltem
Wheat germ oil is a rich source of omega 3 and omega 6-fatty acids, octacosanol and tocopherol which has vitamin E activity. Due to these properties it is very beneficial for health but it is prone to oxidation in free form. Encapsulation provides protection of food ingredients from environmental stresses and increases the stability and functionality of the ingredient, which makes it possible to be used in functional foods. The main objective of this study was to encapsulate wheat germ oil and to investigate its physicochemical properties and stabilities during storage. In encapsulation, aqueous solutions of maltodextrin (MD), gum arabic (GA), whey protein concentrate (WPC), chitosan (CS) and sodium caseinate (NaCa) at different concentrations were used as wall material. Core to coating ratio was constant as 1:8.The effects of different homogenization techniques (ultrasonication (US), high speed blending by silent crusher (SC) and microfluidization (MF)) on particle size distributions of emulsions and efficiency of microcapsules were investigated. The effect of different treatment passes in MF was also studied. In addition, the capsules prepared at the optimum conditions were studied for their storage stability by determining totox value and α tocopherol concentration during storage at 15°C and 45°C at 33.3% RH and 31.10% RH, respectively. NaCa was found to have better encapsulation properties than CS, WPC and GA in encapsulation of wheat germ oil. The SC and MF techniques were better in the formation of stable emulsions as compared to US. The change in treatment passes of MF did not have significant effect on encapsulation efficiencies; on the other hand, the increase in treatment passes decreased particle size of the emulsions. When storage temperature was 15°C, even the non-encapsulated oil was stable to oxidation. Storage stability analyses showed that rate of oxidation of fresh oil was higher than that of encapsulated oil stored at 45°C and microcapsules could maintain their stability for 20 days.

Suggestions

Encapsulation of wheat germ oil
Yazıcıoğlu, Başak; Şahin, Serpil; Şomnu, Gülüm; Department of Food Engineering (2013)
Wheat germ oil is a rich source of omega 3 and omega 6, octacosanol and tocopherol which has vitamin E activity. Due to these properties it is beneficial for health but it is prone to oxidation in free form. The aim of this study was to encapsulate wheat germ oil in micron size and determine the best encapsulation conditions by analysing encapsulation efficiency, particle size distribution and surface morphology of the capsules. The effects of core to coating ratio, coating materials ratio and ultrasonicati...
Enhancement of storage stability of wheat germ oil by encapsulation
KARADENIZ, Meltem; Şahin, Serpil; Şümnü, Servet Gülüm (2018-04-01)
Wheat germ oil which is a rich source of a-tocopherol is susceptible to oxidation. The main objective of this study was to encapsulate wheat germ oil to enhance its oxidation stability. It was also aimed to investigate the effects of different homogenization methods on physicochemical properties and storage stability of encapsulated wheat germ oil. As homogenization methods, silent crusher (SC), microfluidization (MF) and ultrasonication (US) were used. SC and MF techniques created more stable emulsions tha...
Microencapsulation of wheat germ oil
Yazicioglu, Basak; Şahin, Serpil; Şümnü, Servet Gülüm (2015-06-01)
Wheat germ oil (WGO) is beneficial for health since it is a rich source of omega-3, omega-6 and tocopherol. However, as it contains polyunsaturated fatty acids, it is prone to oxidation. The aim of this study was to encapsulate wheat germ oil and determine the effects of core to coating ratio, coating materials ratio and ultrasonication time on particle size distribution of emulsions and encapsulation efficiency (EE) and surface morphology of capsules. Maltodextrin (MD) and whey protein concentrate (WPC) at...
Evaluation of hemicellulose as a coating material with gum arabic for food microencapsulation
Tatar, Feyza; Tunc, Merve Tugce; DERVİŞOĞLU, MUHAMMET; Çekmecelioğlu, Deniz; KAHYAOĞLU, TALİP (Elsevier BV, 2014-03-01)
In this study, hemicellulose-based coatings were assessed for use in microencapsulated fish oil. The fish oil emulsions were prepared using the solutions of gum arabic (GA), gum arabic-hemicellulose (GA-HC) and hemicellulose (HC) as the coating materials, amended with maltodextrin as a cheap filler material. The fish oil was then encapsulated with these emulsions using the spray drying method. The effects of the hemicelluloses on the emulsions and the formed microcapsules were evaluated by physical and chem...
Kinetic and Mathematical Modeling of Drying of Asparagus officinalis in Different Drying Methods
Okur, İlhami (2018-10-01)
Asparagus officinalis is a spring vegetable contains flavonoids, amino acid derivatives, glycolic acid, tyrosine, vitamins, saponins and essential oils and it has health benefits such as prevention of cancer, mutation, inflammation, and liver damage. The aim of this study is to investigate drying kinetics of Asparagus officinalis. According to R, χ2, RMSE and Error values, the model parameters at different temperatures (70°C, 80°C, 90°C), spear thickness (1 mm, 2 mm and 3mm), and microwave power (100 W, 200...
Citation Formats
M. Karadeniz, “Enhancement of storage stability of wheat germ oil by encapsulation,” M.S. - Master of Science, Middle East Technical University, 2015.