Basic thresholding classification

Download
2016
Toksöz, Mehmet Altan
In this thesis, we propose a light-weight sparsity-based algorithm, basic thresholding classifier (BTC), for classification applications (such as face identification, hyperspectral image classification, etc.) which is capable of identifying test samples extremely rapidly and performing high classification accuracy. Originally BTC is a linear classifier which works based on the assumption that the samples of the classes of a given dataset are linearly separable. However, in practice those samples may not be linearly separable. In this context, we also propose another algorithm namely kernel basic thresholding classifier (KBTC) which is a non-linear kernel version of the BTC algorithm. KBTC can achieve promising results especially when the given samples are linearly non-separable. For both proposals, we introduce sufficient identification conditions (SICs) under which BTC and KBTC can identify any test sample in the range space of a given dictionary. By using SICs, we develop parameter estimation procedures which do not require any cross validation. Both BTC and KBTC algorithms provide efficient classifier fusion schemes in which individual classifier outputs are combined to produce better classification results. For instance, for the application of face identification, this is done by combining the residuals having different random projectors. For spatial applications such as hyper-spectral image classification, the fusion is carried out by incorporating the spatial information, in which the output residual maps are filtered using a smoothing filter. Numerical results on publicly available face and hyper spectral datasets show that our proposal outperforms well-known support vector machines (SVM)-based techniques, multinomial logistic regression (MLR)-based methods, and sparsity-based approaches like L1-minimization and simultaneous orthogonal matching pursuit (SOMP) in terms of both classification accuracy and computational cost.

Suggestions

Classification via ensembles of basic thresholding classifiers
TOKSÖZ, Mehmet Altan; Ulusoy, İlkay (Institution of Engineering and Technology (IET), 2016-08-01)
The authors present a sparsity-based algorithm, basic thresholding classifier (BTC), for classification applications which is capable of identifying test samples extremely rapidly and performing high classification accuracy. They introduce a sufficient identification condition (SIC) under which BTC can identify any test sample in the range space of a given dictionary. By using SIC, they develop a procedure which provides a guidance for the selection of threshold parameter. By exploiting rapid classification...
Low-level multiscale image segmentation and a benchmark for its evaluation
Akbaş, Emre (Elsevier BV, 2020-10-01)
In this paper, we present a segmentation algorithm to detect low-level structure present in images. The algorithm is designed to partition a given image into regions, corresponding to image structures, regardless of their shapes, sizes, and levels of interior homogeneity. We model a region as a connected set of pixels that is surrounded by ramp edge discontinuities where the magnitude of these discontinuities is large compared to the variation inside the region. Each region is associated with a scale that d...
A genetic algorithmfor structural optimization
Taşkınoğlu, Evren Eyüp; Oral, Süha; Department of Mechanical Engineering (2006)
In this study, a design procedure incorporating a genetic algorithm (GA) is developed for optimization of structures. The objective function considered is the total weight of the structure. The objective function is minimized subjected to displacement and strength requirements. In order to evaluate the design constraints, finite element analysis are performed either by using conventional finite element solvers (i.e. MSC/NASTRAN®) or by using in-house codes. The application of the algorithm is shown by a num...
A Shadow based trainable method for building detection in satellite images
Dikmen, Mehmet; Halıcı, Uğur; Department of Geodetic and Geographical Information Technologies (2014)
The purpose of this thesis is to develop a supervised building detection and extraction algorithm with a shadow based learning method for high-resolution satellite images. First, shadow segments are identified on an over-segmented image, and then neighboring shadow segments are merged by assuming that they are cast by a single building. Next, these shadow regions are used to detect the candidate regions where buildings most likely occur. Together with this information, distance to shadows towards illuminati...
Continuous dimensionality characterization of image structures
Felsberg, Michael; Kalkan, Sinan; Kruger, Norbert (Elsevier BV, 2009-05-04)
Intrinsic dimensionality is a concept introduced by statistics and later used in image processing to measure the dimensionality of a data set. In this paper, we introduce a continuous representation of the intrinsic dimension of an image patch in terms of its local spectrum or, equivalently, its gradient field. By making use of a cone structure and barycentric co-ordinates, we can associate three confidences to the three different ideal cases of intrinsic dimensions corresponding to homogeneous image patche...
Citation Formats
M. A. Toksöz, “Basic thresholding classification,” Ph.D. - Doctoral Program, Middle East Technical University, 2016.