Quantum mechanical investigation of CO oxidation conducted on automotive exhaust emission catalysts containing LA and PD/LA on Ceria-Zirconia

Download
2016
Kaya, Yasemin
In this study, Three Way Catalyst (TWC) is investigated via Density Functional Theory (DFT) methods. DFT techniques are implemented by Vienna Ab Initio Simulation Package (VASP). Atomic lanthanum substituted and both palladium and lanthanum substituted CZO (110) surfaces are investigated for their catalytic activity in terms of carbon monoxide oxidation. Relative energy profiles for CO reaction mechanisms on these surfaces are obtained and activation barriers of reaction steps are analyzed by using CI-NEB method. It is observed that Oxygen Storage Capacity (OSC) of CZO is remarkably enhanced by the introduction of lanthanum to CZO and Pd-CZO structure. The catalytic activity on La-doped surface in terms of CO oxidation is found as energetically more favorable compared to Pd+La doped surface since there is no activation barrier for the reaction steps carried out on this surface.

Suggestions

Development of three way catalytic converters for elimination of hydrocarbons, carbon monoxide and nitric oxide in automotive exhaust
Civan, Aylin; Önal, Işık; Department of Chemical Engineering (2014)
In this study, catalytic performances of Three Way Catalysts (TWC) are investigated via Density Functional Theory (DFT) methods and catalytic activity tests in a dynamic test system simulating the exhaust conditions of automobiles. DFT techniques are implemented by Vienna Ab Initio Simulation Package (VASP) and effect of manganese doping in TWC compositions are evaluated with computations on manganese, palladium and rhodium substituted ceria-zirconia mixed oxide (CZO) surface models. Carbon monoxide oxidati...
Removal of hydrocarbons, carbon monoxide and nitric oxides in automotive exhaust with three way catalytic converter
Gerçeker, Duygu; Önal, Işık; Department of Chemical Engineering (2013)
In this study, Three Way Catalysts (TWC) are investigated by using Density Functional Theory (DFT) methods and catalytic activity tests in the dynamic test system. Pd4 or Rh4 cluster adsorbed on ceria (CeO2) and ceria-zirconia (CZO) surfaces together with atomic palladium and rhodium substituted CeO2 and CZO surfaces are investigated for their catalytic activity towards carbon monoxide oxidation and nitric oxide reduction. Relative energy profiles for reaction mechanisms are obtained and activation barriers...
Quantum chemical study on 5-nitro-2,4-dihydro-3H-1,2,4-triazol-3-one (NTO) and some of its constitutional isomers
Türker, Burhan Lemi; Atalar, Taner (Elsevier BV, 2006-10-11)
Presently, certain isomeric compounds of NTO and their tautomers have been investigated by performing density functional theory (DFT) calculations at B3LYP/6-31G(d,p) and ROB3P86/6-311G(d,p) levels and also ab initio calculations at RHF/6-311G(d,p) level. The optimized geometries, vibrational frequencies, electronic structures and some thermodynamical values for the presently considered NTO isomers have been obtained in their ground states. Also, detonation performances were evaluated by the Kammlet-Jacobs ...
Adsorption of water and ammonia on TiO2-anatase cluster models
Önal, Işık; Senkan, Selim (2006-06-15)
Density functional theory (DFT) calculations performed at B3LYP/6-31G** level are employed to study water and ammonia adsorption and dissociation on (101) and (001) TiO2 anatase surfaces both represented by totally fixed and partially relaxed Ti2O9H10 cluster models. PM3 semiempirical calculations were also conducted both on Ti2O9H10 and Ti9O33H30 clusters in order to assess the effect of cluster size. Following dissociation, the adsorption of H2O and NH3 by H-bonding on previously H2O and NH3 dissociated s...
Theoretical and experimental investigation of water-gas shift reaction over supported copper/iron oxide catalysts
Yalçın, Özgen; Önal, Işık; Department of Chemical Engineering (2017)
Density functional theory calculations were carried out to investigate the role of the chromium and copper, which were demonstrated to act as textural and catalytic promoters, respectively, for the Fe3O4-Cr2O3-CuO catalyst system by in situ experimental studies at the atomic scale. There is a minor effect of Cr on the dissociative adsorption of H2O, but no effect on CO adsorption on the Feoct2 termination of Fe3O4 (111) surface indicating that Cr does not act as a chemical promoter. Copper promotion of the ...
Citation Formats
Y. Kaya, “Quantum mechanical investigation of CO oxidation conducted on automotive exhaust emission catalysts containing LA and PD/LA on Ceria-Zirconia,” M.S. - Master of Science, Middle East Technical University, 2016.