Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Frequently Asked Questions
Frequently Asked Questions
Communities & Collections
Communities & Collections
Design of smart antenna array for interference suppression in GPS
Download
index.pdf
Date
2016
Author
Dabak, Ömer Can
Metadata
Show full item record
Item Usage Stats
14
views
12
downloads
GPS jammers add excessive noise to received low power GPS signals and have capability to weaken or completely destroy the positioning performance of GPS receivers. The most popular technique to overcome GPS jamming problem is suppression of jammers by using array signal processing techniques. In this thesis, a GPS anti-jamming system is constructed by designing an active antenna array and implementing adaptive beamforming techniques. This thesis mainly include the design of four element active circularly polarized microstrip antenna array, implementation of beamforming techniques and presentation of experimental results obtained from the constructed GPS anti-jamming system. In active antenna array design, circularly polarized operation of the array element is achieved through nearly square microstrip patch antenna structure. After verification of the design by comparing simulation and measurement results, four element planar array is designed and manufactured. Then, four channel LNA card design and production is performed in order to obtain a compact active antenna array. All electromagnetic simulation and parametric analysis of the antennas are performed in electromagnetic simulation tool CST Microwave Studio. In beamforming section, two main beamforming methods that are Capon beamforming and null steering are studied with theory and simulation results obtained from the code developed in MATLAB environment. The jammer suppression success of the constructed system is demonstrated by scenarios that include real satellites and a continuous wave jammer source.
Subject Keywords
Radio frequency microelectromechanical systems.
,
Microelectromechanical systems.
,
Antennas (Electronics).
URI
http://etd.lib.metu.edu.tr/upload/12620150/index.pdf
https://hdl.handle.net/11511/25756
Collections
Graduate School of Natural and Applied Sciences, Thesis