Dynamic formation control with heterogeneous mobile robots

Download
2016
Çimenci, Kadir
Formation control in robotics is a growing topic where research works are mainly geared towards heterogeneous swarm colonies under either decentralized control or limited centralization. Swarm robotics where decentralization is applied, nevertheless assume that the agents are capable of getting global information about the whole swarm.Moreoverintheliterature,formationcontrolisgenerallydoneforknownfixed shapesthatcanbedefinedmathematically. Howevernodynamicallychangingshapes areenvisagedandnoshapetransitionsareclearlyhandledinthoseworks. Weattempt to bring a clear impact to the literature by focusing on tracking and realising formation shapes under dynamically changing formation shape demands. Furthermore,in our thesis work, we focus on robot colonies composed of heterogeneous robots of differentdynamicsandsensorcapabilitiesunderdecentralizeddynamicallychanging formation control. These robots are able furthermore, to just possess local mutual interactions only with their close-by neighboring agents. In our approach communications of each agent with its neighbors converges to information about the whole colony based on graph theory. Simulations in our work are generated using the Gazebo environment by modelling a rough territory. Hardware applications which implements the methods discussed in this thesis work are also developed. These applications are evaluated as proof of concept work which illustrates that the methods can be implemented in real time applications.

Suggestions

Global Urban Localization of Outdoor Mobile Robots Using Satellite Images
DOĞRUER, CAN ULAŞ; Koku, Ahmet Buğra; Dölen, Melik (2008-09-26)
Localization is one of the major research fields in mobile robotics. With the utilization of satellite images and Monte Carlo localization technique, the global localization of an outdoor mobile robot is studied in this paper. The proposed method employs satellite images downloaded from the Internet to localize the robot iteratively. To accomplish this, the proposed method matches the local laser scanner data with the segmented satellite images. Initial test results conducted on the METU campus are found to...
Integrability of a nonautonomous coupled KdV system
Karasu, Emine Ayşe (2004-06-01)
The Painleve property of coupled, nonautonomous Korteweg-de Vries (KdV) type of systems is studied. The conditions under which the systems pass the Painleve test for integrability axe obtained. For some of the integrable cases, exact solutions are given.
Decentralized coordination and control in robotic swarms
Şamiloğlu, Andaç Töre; Koku, Ahmet Buğra; Department of Mechanical Engineering (2012)
In this thesis study the coordination and control strategies for leaderless, decentralized robotic swarms are developed. The mathematical models of the collective motion of agents are derived by mimicry of swarm of organisms like schools of fish, herds of quadrupeds, flocks of flying birds. There are three main parts of this study (i) mathematical modelling, (ii) analytical analysis (iii) experimental and simulation based validations of the results. These works are performed on the (i) Fundamental agreement...
Maximally Permissive Hierarchical Control of Decentralized Discrete Event Systems
SCHMİDT, KLAUS WERNER; Schmidt, Klaus Verner (2011-04-01)
The subject of this paper is the synthesis of natural projections that serve as nonblocking and maximally permissive abstractions for the hierarchical and decentralized control of large-scale discrete event systems. To this end, existing concepts for nonblocking abstractions such as natural observers and marked string accepting (msa)-observers are extended by local control consistency (LCC) as a novel sufficient condition for maximal permissiveness. Furthermore, it is shown that, similar to the natural obse...
Nonblocking hierarchical control of decentralized des
Schmidt, Klaus Verner; Moor, Thomas (null; 2005-12-01)
This work considers a hierarchical control architecture for a class of discrete event systems which can also be applied to decentralized control systems. It is shown that nonblocking supervisory control on the high level of the hierarchy results in nonblocking and hierarchically consistent control on the low level. Copyright © 2005 IFAC.
Citation Formats
K. Çimenci, “Dynamic formation control with heterogeneous mobile robots,” M.S. - Master of Science, Middle East Technical University, 2016.