Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Underwater gliders: modeling, control and simulation studies
Date
2016
Author
Gören, Semih
Metadata
Show full item record
Item Usage Stats
264
views
0
downloads
Cite This
This thesis includes mathematical model, navigation, controller design and guidance of the underwater gliders. Firstly, the mathematical model of the underwater glider is obtained with external forces and moments. The hydrodynamic coefficients are obtained by using the strip theory and Missile DATCOM Simulation Program. For navigation, optimal state estimator Kalman filter is implemented to find the position and the linear velocities of the underwater glider. The controllers are designed according to the linear model which is obtained by linearizing the nonlinear model at equilibrium points. LQG (Linear Quadratic Gaussian) and SMC (Sliding Mode Control) controllers are implemented to control position of the vehicle with respect to earth inertial frame. For the final part of the study, guidance is achieved with LOS (Line of Sight) guidance algorithm. Besides guidance, an obtacle avoiding algorithm that uses the sonar range sensors is studied.
Subject Keywords
Navigation.
,
Underwater gliders.
,
Underwater navigation.
,
Remote submersibles.
URI
http://etd.lib.metu.edu.tr/upload/12620560/index.pdf
https://hdl.handle.net/11511/25944
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Navigation and system identification of an unmanned underwater survey vehicle
Kartal, Seda Karadeniz; Leblebicioğlu, Mehmet Kemal; Department of Electrical and Electronics Engineering (2017)
This study includes the mathematical model of an unmanned underwater vehicle, autopilot and the guidance design, the navigation solution and system identification of the unmanned underwater survey vehicle SAGA (Su Altı Gözlem Aracı). First, the 6 degrees-of-freedom (DOF) nonlinear mathematical model of an unmanned underwater vehicle is obtained by a Newton-Euler formulation. Then, the autopilot is designed by utilizing the proportional–integral–derivative (PID) control approach. The navigation problem is so...
Vision-based Navigation and System Identification of Underwater Survey Vehicle
Kartal, Seda Karadeniz; Leblebicioğlu, Mehmet Kemal; Ege, Emre (2015-05-19)
In this study, a nonlinear mathematical model for an unmanned underwater survey vehicle is obtained. The inertial navigation system and vision-based measurement systems are modelled. The magnetic compass, depth sensor and pitot tube are used in order to support vehicle's attitude, velocity and depth information. The state errors are estimated with error state estimation algorithm from the noisy measurement data. The navigational data of the vehicle can be obtained accurately using the extended Kalman filter...
Experimental test of the acoustic-based navigation and system identification of an unmanned underwater survey vehicle (SAGA)
KARTAL, SEDA; Leblebicioğlu, Mehmet Kemal; Ege, Emre (2018-05-01)
In this study, a nonlinear mathematical model for an unmanned underwater survey vehicle (SAGA) is obtained. The structure of the mathematical model of the vehicle comes from a Newton-Euler formulation. The three-dimensional motion is realized by a suitable combination of right, left and vertical thrusters. The navigation problem is solved by a combination of the inertial navigation system and acoustic-based measurements, which are integrated to obtain more accurate vehicle navigation data. In addition, a ma...
Modeling and motion simulation of an underwater simulation
Küçük, Koray; Özgören, Mustafa Kemal; Department of Mechanical Engineering (2007)
This thesis involves modeling, controller design, and test case simulations for an underwater vehicle. Firstly, a complete dynamic model of the vehicle is developed with six degrees of freedom. The model includes the nonlinearities associated with the hydrodynamic forces and moments. The thrusters of the vehicle are also modeled. Then, using appropriate linearizations of the model, position and rate controllers are designed for the forward, downward, and turning motions of the vehicle. Finally, the designed...
Navigation and path planning of an unmanned underwater vehicle
Gül, Uğur Doğan; Leblebicioğlu, Mehmet Kemal; Department of Electrical and Electronics Engineering (2012)
Due to the conditions peculiar to underwater, distinctive approaches are required to solve the navigation and path planning problem of an unmanned underwater vehicle (UUV). In this study, first of all, a detailed 6 degrees-of-freedom (DOF) mathematical model is formed, including the coupled non-linear forces and moments acting on an underwater vehicle. The hydrodynamic coefficients which correspond to the geometry of the vehicle which the model is based on are calculated using the strip theory. After the ma...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
S. Gören, “Underwater gliders: modeling, control and simulation studies,” M.S. - Master of Science, Middle East Technical University, 2016.