Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Single and multi-frame motion deblurring for legged robots: characterization using a novel fd-aroc performance metric and a comprehensive motion-blur dataset
Download
index.pdf
Date
2016
Author
Gültekin, Gökhan Koray
Metadata
Show full item record
Item Usage Stats
221
views
130
downloads
Cite This
Dexterous legged robots are agile platforms that can move on variable terrain at high speeds. The locomotion of these legged platforms causes oscillations of the robot body which become more severe depending on the surface and locomotion speed. Camera sensors mounted on such platforms experience the same disturbances, hence resulting in motion blur. This is a corruption of the image and results in loss of information which in turn causes degradation or loss of important image features. Most of the studies in the literature and the proposed performance metrics focus mainly on the visual quality of motion blurred images and its improvement. However, from the perspective of computer vision algorithms, feature detection performance is an essential factor that determines their performance. The aim of this study is to analyze and evaluate motion blur on a legged robot and the deblurring methods with a focus on feature detection. We propose a multi-frame motion deblurring method utilizing the variable motion blur in consecutive image frames captured from the camera on a legged mobile robot. For a comparison of blurred and deblurred images, we define a novel performance metric based on the feature detection accuracy. Noting that a suitable data set to evaluate the effects of motion blur and its compensation for legged platforms is lacking in the literature, we develop a comprehensive multi-sensor data set for that purpose. The data set consists of monocular image sequences collected in synchronization with a low cost MEMS gyroscope, an accurate fiber optic gyroscope and an externally measured ground truth motion data. We make use of this data set for an extensive benchmarking of prominent motion deblurring methods from the literature in terms of the proposed feature based metric.
Subject Keywords
Robots
,
Robots
,
Robots
,
Robots
,
Mobile robots.
URI
http://etd.lib.metu.edu.tr/upload/12620620/index.pdf
https://hdl.handle.net/11511/26139
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Optimal control of a half circular compliant legged monopod
Özkan Aydın, Yasemin; Leblebicioğlu, Mehmet Kemal; Saranlı, Afşar; Department of Electrical and Electronics Engineering (2013)
Legged robots have complex architecture because of their nonlinear dynamics and unpredictable ground contact characteristics. They can be also dynamically stable and exhibit dynamically dexterous behaviors like running, jumping, flipping which require complex plant models that may sometimes be difficult to build. In this thesis, we focused on half circular compliant legged monopod that can be considered as a reduced-order dynamical model for the hexapod robot, called RHex. The main objective of this thesis ...
Modeling and control of the three degrees-of-freedom parallel manipulated robotic sensor head
Öğücü, Muhammed Orkun; Saranlı, Afşar; Department of Electrical and Electronics Engineering (2014)
Legged robot platforms have distinct advantages over wheels in rough terrain and provide better mobility. Also in many applications, including military reconnaissance, disaster relief, hazardous site inspection, search and rescue applications benefit from the legged robots which is capable of moving safely at high speeds through rough natural terrain. However, with the increasing speed, fundamental difficulties like dynamic and mechanical limitations as well as control and computational limitations arise. A...
Synchronization of multiple serially actuated robotic legs using virtual damping control
Özen, Merve; Saranlı, Uluç; Department of Computer Engineering (2018)
Even though one-legged models have been found to be a useful fundamental basis for understanding and controlling the dynamics of running, animals and physical robots alike often use multiple legs for additional support, dexterity, and stability. In general, the dynamics of such multi-legged morphologies are more complex and their control is more difficult. A common problem in this context is to achieve a particular phase relationship between periodic oscillations of different legs, resulting in different lo...
Intelligent gait control of a multilegged robot used in rescue operations
Karalarlı, Emre; Erkmen, Aydan Müşerref; Erkmen, İsmet; Department of Electrical and Electronics Engineering (2003)
In this thesis work an intelligent controller based on a gait synthesizer for a hexapod robot used in rescue operations is developed. The gait synthesizer draws decisions from insect-inspired gait patterns to the changing needs of the terrain and that of rescue. It is composed of three modules responsible for selecting a new gait, evaluating the current gait, and modifying the recommended gait according to the internal reinforcements of past time steps. A Fuzzy Logic Controller is implemented in selecting t...
Feature Detection Performance Based Benchmarking of Motion Deblurring Methods: Applications to Vision for Legged Robots
Gultekin, Gokhan Koray; Saranlı, Afşar (Elsevier BV, 2019-02-01)
Dexterous legged robots can move on variable terrain at high speeds. The locomotion of these legged platforms on such terrain causes severe oscillations of the robot body depending on the surface and locomotion speed. Camera sensors mounted on such platforms experience the same disturbances, hence resulting in motion blur. This is a particular corruption of the image and results in information loss further resulting in degradation or loss of important image features. Although motion blur is a significant pr...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
G. K. Gültekin, “Single and multi-frame motion deblurring for legged robots: characterization using a novel fd-aroc performance metric and a comprehensive motion-blur dataset,” Ph.D. - Doctoral Program, Middle East Technical University, 2016.