Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Light trapping micro and nanostructures fabricated by top down approaches for solar cell applications
Download
index.pdf
Date
2016
Author
Altınoluk, Hayriye Serra
Metadata
Show full item record
Item Usage Stats
291
views
119
downloads
Cite This
For an ultimate victory of solar energy over polluting fossil fuels, we need to decrease the cost of electricity generated from the sun. The technology based on photovoltaic (PV) solar cell is offering the most promising alternative in this energy conversion. However, this can be possible only if we can reduce the cost of solar cell fabrication and/or increase the conversion efficiency. In order to increase the performance/cost ratio of solar cells, new approaches reducing optical and electrical losses are necessary during the absorption of the light and collection of charge carriers. In this work we focused on the fabrication techniques and the application of various nanostructures on Si surface towards a better light management of the cell surface. The efficiency of a solar cell strongly depends on the properties of the interaction between the incoming light beam and the surface of the device. In order to maximize the absorption and the efficiency of the cell, various light trapping schemes have been proposed. We have applied various lithography techniques such as optical lithography, nanoimprint lithography (NIL), hole mask colloidal lithography (HCL) to generate various nano structures including nano holes patterns. After these pattern transfer process steps, either dry plasma etching or wet chemical etching techniques were applied. For metal assisted chemical etching different metals like silver, gold, titanium were used as the catalyst of the etching. The effect of metal, metal layer thickness, process time and orientation of the wafer were studied. Structural properties of the features like hole diameter, pitch size, depth were varied and optimized. With a variety of texturing and etching process types, at the end of the study, periodic and random-introduced-periodic patterns were successfully implemented to solar cell fabrication step. The performances of the solar cells were investigated both optically and electrically.
Subject Keywords
Solar cells.
,
Nanostructures.
,
Photovoltaic cells.
,
Nanoimprint lithography.
URI
http://etd.lib.metu.edu.tr/upload/12620660/index.pdf
https://hdl.handle.net/11511/26198
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Development of supercapacitors with one dimensional nanomaterials
Yüksel, Recep; Ünalan, Hüsnü Emrah; Çırpan, Ali; Department of Micro and Nanotechnology (2016)
For an ultimate victory of solar energy over polluting fossil fuels, we need to decrease the cost of electricity generated from the sun. The technology based on photovoltaic (PV) solar cell is offering the most promising alternative in this energy conversion. However, this can be possible only if we can reduce the cost of solar cell fabrication and/or increase the conversion efficiency. In order to increase the performance/cost ratio of solar cells, new approaches reducing optical and electrical losses are ...
Surface texturing study with aluminum induced texturing method on soda-lime glass substrates for thin film solar cells
Ünal, Mustafa; Turan, Raşit; Ünalan, Hüsnü Emrah; Department of Micro and Nanotechnology (2017)
It is essential to employ an effective light trapping scheme to decrease the cost of produced solar electricity further in thin film solar cell technologies. There are several methods that can be used for light trapping and aluminum induced texturing (AIT) is one of them. The aim of this thesis study is to obtain highly effective light trapping interface via texturing of glass surface by AIT process. The resultant texture is affected by several parameters such as Al thickness, annealing time and temperature...
Novel metal assisted etching technique for enhanced light management in black crystalline SI solar cells /
Es, Fırat; Turan, Raşit; Department of Chemistry (2015)
Photovoltaic (PV) technology needs higher performance - lower cost materials and structures in order to catch the grid parity and become an everyday use power source. The most commonly used material in PV, crystalline silicon, suffers from low absorption due to its indirect band gap nature. In order to overcome this problem, several light trapping structures have been used that increase the path length of photons inside the absorbing body of the device. However, conventional light trapping schemes cannot be...
Design and realization of a new concentrating photovoltaic solar energy module based on lossless horizontally staggered light guide
Selimoğlu, Özgür; Turan, Raşit; Department of Physics (2013)
Concentrating Photovoltaic systems are good candidates for low cost and clean electricity generation from solar energy. CPV means replacing much of the expensive semiconductor photovoltaic cells with the cheaper optics. Although the idea is simple, CPV systems have several problems inherent to their system design, such as module thickness, expensive PV cells and overheating. Light guide systems are good alternatives to classical CPV systems that can clear off most of the problems of those systems. In this t...
Syntheses of benzodithiophene and thienopyrroledione containing conjugated random polymers as components for organic solar cells
Azeri, Özge; Çırpan, Ali; Department of Chemistry (2017)
In recent years organic solar cells (OSC) have attracted considerable attention as promising candidates for renewable energy technology because of their low cost, light weight and flexibility. In this study, in order to improve the efficiency of a bulk heterojunction solar cell, two conjugated random polymers were designed. For this purpose, benzodithiophene and thienopyrroledione containing two random copolymers were synthesized. The effects of several acceptors such as benzotriazole and benzothiadiazole o...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
H. S. Altınoluk, “Light trapping micro and nanostructures fabricated by top down approaches for solar cell applications,” Ph.D. - Doctoral Program, Middle East Technical University, 2016.