Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Character sums of quadratic forms over finite fields and the number of rational points for some classes of artin-schreier type curves
Download
index.pdf
Date
2017
Author
Coşgun, Ayhan
Metadata
Show full item record
Item Usage Stats
289
views
166
downloads
Cite This
Exponential sums of quadratic forms over finite fields have many applications to various areas such as coding theory and cryptography. As an example to these applications, there is an organic connection between exponential sums of quadratic forms and the number of rational points of algebraic curves defined over finite fields. This connection is central in the application of algebraic geometry to coding theory and cryptography. In this thesis, different facts and techniques of theory of finite fields are combined properly in order to improve and generalize some of the results in the existing literature on evaluation of exponential sums of certain quadratic forms. These evaluations also correspond to the Walsh-Hadamard transforms of Boolean functions in characteristic two. As a result of these evaluations, the number of rational points are computed for some classes of Artin-Schreier type curves over finite fields.
Subject Keywords
Finite fields (Algebra).
,
Forms, Quadratic.
,
Curves, Algebraic.
,
Algebra, Boolean.
URI
http://etd.lib.metu.edu.tr/upload/12621098/index.pdf
https://hdl.handle.net/11511/26492
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
On multiplication in finite fields
Cenk, Murat; Özbudak, Ferruh (2010-04-01)
We present a method for multiplication in finite fields which gives multiplication algorithms with improved or best known bilinear complexities for certain finite fields. Our method generalizes some earlier methods and combines them with the recently introduced complexity notion (M) over cap (q)(l), which denotes the minimum number of multiplications needed in F-q in order to obtain the coefficients of the product of two arbitrary l-term polynomials modulo x(l) in F-q[x]. We study our method for the finite ...
Value sets of Lattes maps over finite fields
Küçüksakallı, Ömer (Elsevier BV, 2014-10-01)
We give an alternative computation of the value sets of Dickson polynomials over finite fields by using a singular cubic curve. Our method is not only simpler but also it can be generalized to the non-singular elliptic case. We determine the value sets of Lattes maps over finite fields which are rational functions induced by isogenies of elliptic curves with complex multiplication.
Galois structure of modular forms of even weight
Gurel, E. (Elsevier BV, 2009-10-01)
We calculate the equivariant Euler characteristics of powers of the canonical sheaf on certain modular curves over Z which have a tame action of a finite abelian group. As a consequence, we obtain information on the Galois module structure of modular forms of even weight having Fourier coefficients in certain ideals of rings of cyclotomic algebraic integers. (c) 2009 Elsevier Inc. All rights reserved.
On constructions and enumeration of bent and semi-bent functions
Koçak, Neşe; Doğanaksoy, Ali; Saygı, Zülfükar; Department of Cryptography (2015)
Bent and semi-bent functions play an important role in cryptography and coding theory. They are widely studied as parts of building blocks in symmetric key cryptosystems because they provide resistance to fast correlation attacks and linear cryptanalysis due to their high nonlinearity. Besides, they can possess other desirable cryptographic properties such as low autocorrelation, propagation criteria, resiliency and high algebraic degree. Therefore, parallel to the advances in cryptanalysis techniques, the ...
Characterisation and enumeration of a class of semi bent quadratic Boolean functions
KOÇAK, Neşe; Koçak, Onur Ozan; Özbudak, Ferruh; SAYGI, ZÜLFÜKAR (2015-01-01)
In this paper, we consider semi-bentness of quadratic Boolean functions defined for even n and give the characterisation of these functions. Up to our knowledge, semi-bentness of this class has not been investigated before and we proved that semi-bent functions of this form exist only for 6|n. Furthermore, we present a method for enumeration of semi-bent and bent functions in certain classes. Using this method we find the exact number of semi-bent functions of this form. Moreover, we complete some previous ...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
A. Coşgun, “Character sums of quadratic forms over finite fields and the number of rational points for some classes of artin-schreier type curves,” Ph.D. - Doctoral Program, Middle East Technical University, 2017.