Advances in optimal control of markov regime-switching models with applications in finance and economics

Download
2017
Savku, Emel
We study stochastic optimal control problems of finance and economics in a Markov regime-switching jump-diffusion market with and without delay component in the dynamics of our model. We formulate portfolio optimization problems as a two player zero-sum and a two player nonzero-sum stochastic differential games. We provide an extension of Dynkin formula to present the Hamilton-Jacobi-Bellman-Isaacs equations in such a more general setting. We illustrate our results for a nonzero-sum stochastic differential game and investigate the impact of regime-switches by comparative statics of a two state Markov regime-switching jump-diffusion model. We prove the existence-uniqueness theorems for a stochastic differential delay equation with jumps and regimes (SDDEJR) and for an anticipated backward stochastic differential equation with jumps and regimes (ABSDEJR). Furthermore, we give the duality between an SDDEJR and an ABSDEJR. We establish necessary and sufficient maximum principles under full and partial information for an SDDEJR. We show that the adjoint equations are represented by an ABSDEJR. We apply our results to a problem of optimal consumption problem from a cash flow with delay and regimes. 

Suggestions

Two studies on backward stochastic differential equations
Tunç, Vildan; Sezer, Ali Devin; Department of Financial Mathematics (2012)
Backward stochastic differential equations appear in many areas of research including mathematical finance, nonlinear partial differential equations, financial economics and stochastic control. The first existence and uniqueness result for nonlinear backward stochastic differential equations was given by Pardoux and Peng (Adapted solution of a backward stochastic differential equation. System and Control Letters, 1990). They looked for an adapted pair of processes {x(t); y(t)}; t is in [0; 1]} with values i...
A Stochastic Maximum Principle for a Markov Regime-Switching Jump-Diffusion Model with Delay and an Application to Finance
Savku, Emel; Weber, Gerhard Wilhelm (2018-11-01)
We study a stochastic optimal control problem for a delayed Markov regime-switching jump-diffusion model. We establish necessary and sufficient maximum principles under full and partial information for such a system. We prove the existence-uniqueness theorem for the adjoint equations, which are represented by an anticipated backward stochastic differential equation with jumps and regimes. We illustrate our results by a problem of optimal consumption problem from a cash flow with delay and regimes.
Stochastic volatility and stochastic interest rate model with jump and its application on General Electric data
Celep, Betül; Hayfavi, Azize; Department of Financial Mathematics (2011)
In this thesis, we present two different approaches for the stochastic volatility and stochastic interest rate model with jump and analyze the performance of four alternative models. In the first approach, suggested by Scott, the closed form solution for prices on European call stock options are developed by deriving characteristic functions with the help of martingale methods. Here, we study the asset price process and give in detail the derivation of the European call option price process. The second appr...
A STOCHASTIC APPROACH TO MODEL HOUSING MARKETS: THE US HOUSING MARKET CASE
YILMAZ, BİLGİ; Kestel, Sevtap Ayşe (2018-12-01)
This study aims to estimate the price changes in housing markets using a stochastic process, which is defined in the form of stochastic differential equations (SDEs). It proposes a general SDEs system on the price structure in terms of house price index and mortgage rate to establish an effective process. As an empirical analysis, it applies a calibration procedure to an SDE on monthly S&P/Case-Shiller US National Home Price Index (HPI) and 30-year fixed mortgage rate to estimate parameters of differentiabl...
Advanced Mathematical Methods of Financial Risk Management Investigated and Solved by New Methods of Stochastic Calculus, Mathematical Statistics and Optimization
Weber, Gerhard Wilhelm(2010-12-31)
Advanced Mathematical Methods of Financial Risk Management Investigated and Solved by New Methods of Stochastic Calculus, Mathematical Statistics and Optimization
Citation Formats
E. Savku, “Advances in optimal control of markov regime-switching models with applications in finance and economics,” Ph.D. - Doctoral Program, Middle East Technical University, 2017.