3D indirect shape retrieval based on hand interaction

2017
Irmak, Erdem Can
In this thesis, a novel 3D indirect shape analysis method is presented which successfully retrieves 3D shapes based on the hand-object interaction. In the first part of the study, the human hand information is processed and trans- ferred to the virtual environment by Leap Motion Controller. Position and rotation of the hand, the angle of the finger joints are used for this part in our method. Also, in this approach, a new type of feature, which we call inter- action point, is introduced. These interaction points are placed on the digital hand model and indicate whether the hand touches the 3D shape or not. In the second part, every 3D shape is represented by feeding hand features to the Support Vector Machine. Experiments validate that Support Vector Machine results are usable for retrieval of 3D shapes. Moreover, we compared the re- trieval performance of our method with an interaction based indirect method based on Data Glove as well as a direct method based on 3D shape distri- bution histograms. These comparison revealed different advantages of our method, which are i) being lower-cost compared to Data Glove, and ii) being more discriminative compared to a direct approach. The main contribution of this thesis is threefold: i) Noisy and/or deficient 3d shapes can be retrieved ii) The retrieval is not affected by the alignment of shape iii) Performance of the method is independent of the polygon count of the shape.

Suggestions

3D indirect shape retrieval based on hand interaction
Irmak, Erdem Can; Sahillioğlu, Yusuf (Springer Science and Business Media LLC, 2020-01-01)
In this work, we present a novel 3D indirect shape analysis method which successfully retrieves 3D shapes based on hand-object interaction. To this end, the human hand information is first transferred to the virtual environment by the Leap Motion controller. Position-, angle- and intersection-based novel features of the hand and fingers are used for this part. In the guidance of these features that define the way humans grab objects, a support vector machine (SVM) classifier is trained. Experiments validate...
3D object recognition using scale space of curvatures
Akagündüz, Erdem; Ulusoy, İlkay; Department of Electrical and Electronics Engineering (2011)
In this thesis, a generic, scale and resolution invariant method to extract 3D features from 3D surfaces, is proposed. Features are extracted with their scale (metric size and resolution) from range images using scale-space of 3D surface curvatures. Different from previous scale-space approaches; connected components within the classified curvature scale-space are extracted as features. Furthermore, scales of features are extracted invariant of the metric size or the sampling of the range images. Geometric ...
3d face representation and recognition using spherical harmonics
Tunçer, Fahri; Halıcı, Uğur; Department of Electrical and Electronics Engineering (2008)
In this study, a 3D face representation and recognition method based on spherical harmonics expansion is proposed. The input data to the method is range image of the face. This data is called 2.5 dimensional. Input faces are manually marked on the two eyes, nose and chin points. In two dimensions, using the marker points, the human face is modeled as two concentric half ellipses for the selection of region of interest. These marker points are also used in three dimensions to register the faces so that the n...
Image-based extraction of material reflectance properties of a 3D rigid object
Erdem, ME; Erdem, IA; Yilmaz, UG; Atalay, Mehmet Volkan (2004-01-01)
In this study, an appearance reconstruction method based on extraction of material reflectance properties of a three-dimensional (3D) object from its two-dimensional (2D) images is explained. One of the main advantages of this system is that the reconstructed object can be rendered in real-time with photorealistic quality in varying illumination conditions. The reflectance of the object is decomposed into diffuse and specular components. While the diffuse component is stored in a global texture, the specula...
3D object recognition from range images using transform invariant object representation
AKAGÜNDÜZ, erdem; Ulusoy, İlkay (Institution of Engineering and Technology (IET), 2010-10-28)
3D object recognition is performed using a scale and orientation invariant feature extraction method and a scale and orientation invariant topological representation. 3D surfaces are represented by sparse, repeatable, informative and semantically meaningful 3D surface structures, which are called multiscale features. These features are extracted with their scale (metric size and resolution) using the classified scale-space of 3D surface curvatures. Triplets of these features are used to represent the surfac...
Citation Formats
E. C. Irmak, “3D indirect shape retrieval based on hand interaction,” M.S. - Master of Science, Middle East Technical University, 2017.