Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Frequently Asked Questions
Frequently Asked Questions
Browse
Browse
By Issue Date
By Issue Date
Authors
Authors
Titles
Titles
Subjects
Subjects
Communities & Collections
Communities & Collections
Data mining approach for direct marketing of banking products with profit/cost analysis
Download
index.pdf
Date
2017
Author
Korkmaz, Ozan
Metadata
Show full item record
Item Usage Stats
6
views
0
downloads
Nowadays, direct marketing is widely used advertisement method by many business areas such as banks. The main purposes of direct marketing are to maximize return on investment, minimize cost of promotions and reach to peak number of customers that prefer the offerred campaign. Therefore, it is necessary to collect and process huge amount of customer related data to decide questions of which customer will be offered a product, which product will be suitable to him/her and via which channel the promotion will be presented. However, because positive customer response rates are much less than negative ones, negative data instances dominate positive ones and cause imbalance in dataset. This problem makes it difficult to make a successful selection of product and channel for a promotion and therefore, brings about decrease on true predictions and total profit value while false predictions and total cost value increase. In this thesis, methods are proposed which improve profit/cost ratio to increase return on investment while increasing accuracy rate. Experiments with proposed methods applied on a real bank dataset show very promising profit/cost ratios and accuracy rates on predicting customers with proper products and channels. Results of experiments indicate that proposed methods yield some amount of decrease on total profit value; however, since the decrease rate of total cost value is much greater than total profit one, profit/cost ratio increases.
Subject Keywords
Data mining.
,
Banks and banking.
,
Marketing
URI
http://etd.lib.metu.edu.tr/upload/12621552/index.pdf
https://hdl.handle.net/11511/26629
Collections
Graduate School of Natural and Applied Sciences, Thesis