CEREBRA: a 3-D visualization and processing tool for brain network extracted from fMRI data

Download
2017
Nasır, Barış
In this thesis, we introduce a new tool, CEREBRA, for visualizing 3D network of human brain, extracted from the functional magnetic resonance imaging (fMRI) data. The tool aims to visualize the selected voxels as the nodes of the network and the edge weights are estimated by modeling the relationships among the voxel time series as a set of linear regression equations. This way, researchers can analyze the active brain regions/voxels and observe the interactions among them by analyzing the edge weights and node degree distributions of the brain network, for the underlying brain state(s). CEREBRA provides an easy to use interactive interface with basic display options for users to examine the details of the brain network. CEREBRA simplifies the network by built-in processors of graph reduction algorithms to display various properties of the network. The reduction algorithms vary from basic filtering methods to more complex graph sparsifier metrics. The toolbox is, also, capable of space-time representation of the dynamically changing voxel intensity and edge strength values, by animating the 3D voxel time series. 

Suggestions

CEREBRA: A 3-D Visualization Tool for Brain Network Extracted from fMRI Data
Nasır, Barış; Yarman Vural, Fatoş Tunay (2016-08-20)
In this paper, we introduce a new tool, CEREBRA, to visualize the 3D network of human brain, extracted from the fMRI data. The tool aims to analyze the brain connectivity by representing the selected voxels as the nodes of the network. The edge weights among the voxels are estimated by considering the relationships among the voxel time series. The tool enables the researchers to observe the active brain regions and the interactions among them by using graph theoretic measures, such as, the edge weight and n...
Representation of human brain by mesh networks
Önal Ertuğrul, Itır; Yarman Vural, Fatoş Tunay; Department of Computer Engineering (2017)
In this thesis, we propose novel representations to extract discriminative information in functional Magnetic Resonance Imaging (fMRI) data for cognitive state and gender classification. First, we model the local relationship among a set of fMRI time series within a neighborhood by considering temporal information obtained from all measurements in time series. The estimated local relationships, called Mesh Arc Descriptors (MADs), are employed to represent information in fMRI data. Second, we adapt encoding ...
An Information theoretic representation of brain connectivity for cognitive state classification using functional magnetic resonance imaging
Önal, Itır; Yarman Vural, Fatoş Tunay; Department of Computer Engineering (2013)
In this study, a new method for analyzing and representing the discriminative information, distributed in functional Magnetic Resonance Imaging (fMRI) data, is proposed. For this purpose, a local mesh with varying size is formed around each voxel, called the seed voxel. The relationships among each seed voxel and its neighbors are estimated using a linear regression equation by minimizing the expectation of the squared error. This squared error coming from linear regression is used to calculate various info...
A Hierarchical representation and decoding of fMRI data by partitioning a brain network
Moğultay, Hazal; Yarman Vural, Fatoş Tunay; Department of Computer Engineering (2017)
In this study, we propose a hierarchical network representation of human brain extracted from fMRI data. This representation consists of two levels. In the first level, we form a network among the voxels, smallest building block of fMRI data. In the second level, we define a set of supervoxels by partitioning the first level network into a set of subgraphs, which are assu med to represent homogeneous brain regions with respect to a predefined criteria. For this purpose, we develop a novel brain parcellation...
Application of High Resolution Magnetic Resonance Imaging Methods for Spinal Cord Tissue Segmentation
Durlu, Caglayan; Erdogan, Hasan Balkar; Kucukdeveci, Osman Fikret; Gençer, Nevzat Güneri (2016-01-01)
This paper presents the primitive results of high resolution Magnetic Resonance (MR) Imaging experiments that are performed for spinal cord segmentation purposes. In the study, it is aimed to image the epidural space, the cerebrospinal fluid, the white matter and the gray matter tissues in the lower cervical and upper thoracic regions of the spine with a maximum voxel size of 1x1x1 mm(3). For this purpose, the MRI sequences providing T2 and T2* images and used for spinal cord segmentation in the literature ...
Citation Formats
B. Nasır, “CEREBRA: a 3-D visualization and processing tool for brain network extracted from fMRI data,” M.S. - Master of Science, Middle East Technical University, 2017.