A study on energy trapping parameters of a multistable elastic beam

Download
2018
Zembilören, Ahmet
Energy absorbing systems are being widely used in personnel protection, packaging of special products, aircraft and land vehicles and in many other industries as impact absorbers. Conventional energy absorbing systems absorb impact energy usually by undergoing plastic deformation and thus cannot be reused. A multistable elastic tilted beam can lock in (trap) strain energy when exposed to an impact and can fully recover after unloading. This fully reversible cycle allows repetitive usage of the system for many times. In this study, factors effecting energy-trapping capacity of an elastic tilted beam are determined by using finite element method (FEM). A 2D planar beam is modeled with the commercial finite element program ABAQUS. Geometrical and topological parameters defining the model are varied and many finite element runs are conducted to determine the energy trapping capacity of the beam while keeping the volume of the beam constant. Optimum beam dimensions, tilt angle and geometry are found. The objective of this study is to determine the parameters of the tilted beam yielding to the maximum energy trapping while using the same amount of material.

Suggestions

A composite dislocation cell model to describe strain path change effects in BCC metals
Yalçınkaya, Tuncay; Geers, M.G.D. (IOP Publishing, 2009-11-16)
Sheet metal forming processes are within the core of many modern manufacturing technologies, as applied in, e.g., automotive and packaging industries. Initially flat sheet material is forced to transform plastically into a three-dimensional shape through complex loading modes. Deviation from a proportional strain path is associated with hardening or softening of the material due to the induced plastic anisotropy resulting from the prior deformation. The main cause of these transient anisotropic effects at m...
A Cr-Ni Thermoelectric MEMS Energy Harvester for Low Profile Applications
Topal, Emre Tan; Zorlu, Ozge; Külah, Haluk; Muhtaroglu, Ali (2011-12-02)
Energy harvesting from heat has been investigated for many decades and has found place in many areas such as space industry, aviation, automotive and industrial applications. Thermoelectric energy harvesting has a valuable potential to be used in mobile systems as well. In this study, the design, fabrication and test results of a low cost and low profile MEMS thermoelectric energy harvester composed of Cr and Ni thermocouples is introduced for mobile computing applications. Finite element modelling for perf...
A model for long-term global air quality prediction and development of efficient control strategies in Turkey
Kumbaroglu, GS (1997-10-16)
This paper presents an environmental model which differentiates fuel consumption by sectoral use and allows for the reduction of emissions by coupling different emission control technologies to energy conversion and end-use activities. The model can be coupled to any energy model for forecasting air pollutant emissions and developing efficient emission control strategies. An energy-economy module has been integrated into the model and an equilibrium solution for the three-component model is obtained by util...
A continuous path planning approach on Voronoi diagrams for robotics and manufacturing applications
Özcan, Melih; Yaman, Ulaş (2019-01-01)
Coverage of an area is required for a large variety of robotics and manufacturing applications, such as environment monitoring, home cleaning, search and rescue operations, machining, delivery, additive manufacturing and even for 3D terrain reconstruction. In this work, we present highly flexible algorithms that can be used for coverage and graph traversal. Although our methods take advantage of variable-sized Voronoi cells, by which regular, irregular and complex geometries can be easily composed, it is no...
An experimental study on the burning rates of interacting fires in tunnels
SHAFEE, SINA; Yozgatlıgil, Ahmet (2018-03-01)
Multiple fires may occur in close proximity in process industries, power generation and fuel storage facilities and confinement conditions such as tunnels, which can lead to a considerable alteration in fire characteristics and safety design. The topic is of significant importance to the fire safety research because there is little work in the literature that investigates the case of interacting fires, which have a destructive potential. In this work, we study the effects of an adjacent fire source on the b...
Citation Formats
A. Zembilören, “A study on energy trapping parameters of a multistable elastic beam,” M.S. - Master of Science, Middle East Technical University, 2018.