Metaheuristic based backcalculation of rock mass parameters around tunnels

Gedik, Görkem
Due to uncertainities in the ground conditions and the complexity of soil-structure interactions, the determination of accurate ground parameters, which are not only used in tunnel construction but in the design of all underground structures, have a great significance in having structures that are cost-efficient. Backcalculation methods which rely not only on laborotory and field tests but also on field monitoring and field data provide real structure conditions and therefore it is gaining popularity in geotechnical engineering. In this sense, when compared to the conventional methods, backcalculation methods are able to attain accurate geomechanical parameters of materials surrounding the tunnels with the help of deformation data that is observed in tunnel constuctions. Tunnels are especially significant as they compose a great part of all underground structures. Obtaining these parameters in a fast manner is important in terms of the calibration of the parameters that are gathered during the construction. In this study, a finite element based backcalculation is developed by using Simulated Annealing and Particle Swarm Optimization methods. On the developed platform, the metaheuristic based algorithms, which are embedded into the back analysis platform as an intelligent parameter selection method which provide data for the finite element method. The response of the tunnel structure is obtained via twodimensional finite element analyses. The developed back analysis platform is tested by using the deformation data which is gathered from the T26 tunnel construction within the scope of Ankara-Istanbul Highspeed railway project. The tunnel is opened with the New Austrian Tunnel Method and therefore, not only the rock mass parameters of the graphite-schist surrounding the tunnel but also the in-situ stress around the tunnel are backcalculated. Verifications is done by comparing the ground parameters that are gathered through the calculations with the laboratory results. It is observed that the success of the results is due to the optimization algorithm that has been used and the sensitivity of the measured values. The documented parameters can be used to better undertstand the rock mass behavior and to create more realistic models for the underground structures that have the same rock mass conditions. This study enabled to obtain the correct parameters in a fast and accurate manner by using optimization algorithms and finite element method for tunnels where backcalculation methods are used.


Metaheuristic based soil parameter identification in deep excavations
Akgül, Abdülsamed; Pekcan, Onur; Department of Civil Engineering (2019)
Attaining accurate ground parameters in the design of cost- efficient underground structures is essential due to the level of complexity and uncertainty in soil- structure interactions and ground conditions. Backcalculation methods have an increasing popularity in the field of geotechnical engineering due to the fact that these methods rely on laboratory and field tests in addition to field monitoring and field information which delivers genuine structure conditions. Therefore, the use of this method provid...
An Investigation of seismic face stability of deep tunnels by using an axisymmetric finite element model
Hadley, Hannah Elizabeth; Sucuoğlu, Haluk; Yılmaz, Mustafa Tolga; Department of Civil Engineering (2018)
The static stability of tunnel faces has been widely studied, with the development of limit analysis and numerical modelling solutions. There has been limited research into seismic tunnel face stability. The aim of this study is to find the effect of seismic loading on tunnel face stability and suggest factors that could be used in design. A numerical model using the axisymmetric finite element method is developed to assess tunnel face stability under seismic loading. To verify the numerical analysis, it wa...
Technological characteristics of abrick masonry structure and their relationship with the structural behaviour /
Aktaş, Yasemin Didem; Türer, Ahmet; Department of Archaeometry (2006)
The aim of this study is to investigate the physical and mechanical properties of construction materials in relation with the structural behaviour of a historic structure. Within this framework, the brick masonry superstructure of Tahir ile Zuhre Mescidi, a XIIIth century Seljuk monument in Konya was selected as case study. The study started with the determination of the basic physical (bulk density, effective porosity, water absorption capacity), mechanical (modulus of elasticity, uniaxial compressive stre...
Finite element analysis and practical modeling of reinforced concrete multi-bin circular silos
Balkaya, C; Kalkan, E; Yuksel, SB (2006-05-01)
Stress resultants in overlapping wall regions (intersection walls) of multi-bin circular silos require a significant computational effort to determine forces due to structural continuity. This paper presents a practical equivalent beam model for computing design forces along the silo walls when subjected to various internal and interstice loadings. The equivalent beam model of intersection wall was developed based on the effective length concept, and verified in a comprehensive series of finite element (FE)...
Multicomponent seismic loss estimation on the North Anatolian Fault Zone (Turkey)
Karim Zadeh Naghshineh, Shaghayegh; Askan Gündoğan, Ayşegül; Erberik, Murat Altuğ; Yakut, Ahmet (null; 2015-12-14)
Seismic loss estimation is essential to incorporate seismic risk of structures into an efficient decision-making framework. Evaluation of seismic damage of structures requires a multidisciplinary approach including earthquake source characterization, seismological prediction of earthquake-induced ground motions, prediction of structural responses exposed to ground shaking, and finally estimation of induced damage to structures. As the study region, Erzincan, a city on the eastern part of Turkey is selected ...
Citation Formats
G. Gedik, “Metaheuristic based backcalculation of rock mass parameters around tunnels,” M.S. - Master of Science, Middle East Technical University, 2018.